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settings for a transformation of primitives of a Semantic Web
ontology language into primitives of a software modeling
language. The adjusted configuration settings may be stored
on a storage device. The transformation of primitives of the
Semantic Web ontology language into primitives of the soft-
ware modeling language may be performed using the
adjusted configuration settings stored on the storage device.
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1
ADJUSTABLE TRANSFORMATIONS FROM
SEMANTIC WEB LANGUAGES

TECHNICAL FIELD

The present application relates generally to the technical
field of data processing, and, in various embodiments, to
methods and systems of transforming ontologies of Semantic
Web languages.

BACKGROUND

The Semantic Web is an effort led by the World Wide Web
Consortium (W3C) aiming to allow the exchange and reuse of
data by formalizing the meaning of information. As a classic
means of knowledge representation, ontologies play a vital
role in this effort. The Resource Description Framework
(RDF) and RDF Schema (RDFS) are the W3C recommenda-
tions for ontology definition. They are increasingly being
used to define ontologies which serve as reference models in
a specific domain (e.g., the ISO 15926 Oil & Gas ontology).

Currently, the majority of conventional software engineers
typically neither have knowledge in Semantic Web languages
such as RDFS, nor do they have the time for familiarizing
themselves with the new technology. Yet, at the same time,
Semantic Web languages are increasingly being used for
specifying reference models on which software has to be
built. Therefore, conventional software developers are
prompted to build software on the basis of such ontologies.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the present disclosure are illustrated
by way of example and not limitation in the figures of the
accompanying drawings, in which like reference numbers
indicate similar elements, and in which:

FIG. 1 is a network diagram illustrating a client-server
system, in accordance with an example embodiment;

FIG. 2 is a block diagram illustrating enterprise applica-
tions and services in an enterprise application platform, in
accordance with an example embodiment;

FIG. 3 illustrates a four layer architecture of MOF, in
accordance with an example embodiment;

FIG. 4 illustrates a simplified view of the MOF metamodel,
in accordance with an example embodiment;

FIG. 5 illustrates a simplified version of the Ecore meta-
model, in accordance with an example embodiment;

FIG. 6 is a block diagram of an ontology transformation
system, in accordance with an example embodiment;

FIG. 7 is a flowchart illustrating a method of transforming
a Semantic Web language ontology into a software meta-
model and model, in accordance with an example embodi-
ment;

FIG. 8 is a flowchart illustrating another method of trans-
forming a Semantic Web language ontology into a software
meta-model and model, in accordance with an example
embodiment;

FIG. 9 illustrates an improved helper class generation, in
accordance with an example embodiment;

FIG. 10 illustrates an RDF graph showing a resource being
used as both a class and an individual, in accordance with an
example embodiment;

FIG. 11 illustrates an RDF graph showing a resource being
used as both a class and a property, in accordance with an
example embodiment;
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FIG. 12 illustrates an RDF graph showing a resource being
used as both a property and an individual, in accordance with
an example embodiment;

FIG. 13 illustrates an RDF graph showing a resource being
used as both a class, a property, and an individual, in accor-
dance with an example embodiment;

FIG. 14 illustrates a property chain, in accordance with an
example embodiment;

FIG. 15 illustrates a simplified plug-in dependency dia-
gram, in accordance with an example embodiment;

FIG. 16 illustrates a package dependency diagram, in
accordance with an example embodiment;

FIG. 17 illustrates a package structure of an implementa-
tion, in accordance with an example embodiment;

FIG. 18 illustrates the composition of a config package, in
accordance with an example embodiment;

FIG. 19 illustrates the composition of an owl package, in
accordance with an example embodiment;

FIG. 20 illustrates the composition of an ecore package, in
accordance with an example embodiment;

FIG. 21 illustrates a graphical user interface for specitying
an OWL ontology, in accordance with an example embodi-
ment;

FIG. 22 illustrates a graphical user interface for specitying
a configuration file, in accordance with an example embodi-
ment;

FIG. 23 illustrates a graphical user interface for specitying
general transformation settings, in accordance with an
example embodiment;

FIG. 24 illustrates a graphical user interface for specitying
default settings for distinct entities, in accordance with an
example embodiment;

FIG. 25 illustrates a graphical user interface for specitying
an output directory, in accordance with an example embodi-
ment;

FIG. 26 illustrates a graphical user interface for specitying
a reasoned for the transformation, in accordance with an
example embodiment;

FIG. 27 illustrates a configuration file editor, in accordance
with an example embodiment;

FIG. 28 illustrates a graphical user interface for general
transformation configuration, in accordance with an example
embodiment

FIG. 29 illustrates a graphical user interface with a con-
figuration for maximum preservation, in accordance with an
example embodiment;

FIG. 30 illustrates an Ecore diagram after a first informa-
tion preserving transformation, in accordance with an
example embodiment;

FIG. 31 illustrates a graphical user interface for customiz-
ing the name of anonymous classes, in accordance with an
example embodiment;

FIG. 32 illustrates an Ecore diagram after customizing
class names, in accordance with an example embodiment;

FIG. 33 illustrates a graphical user interface with a con-
figuration for a simple model, in accordance with an example
embodiment;

FIG. 34 illustrates an Ecore diagram of a clean and simple
software model, in accordance with an example embodiment;

FIG. 35 illustrates a graphical user interface for creating
CustomPushDown elements for the isPArtOf property, in
accordance with an example embodiment;

FIG. 36 illustrates a graphical user interface for setting the
domain and range values for the CustomPushDown elements,
in accordance with an example embodiment;
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FIG. 37 illustrates an Ecore diagram after pushing down
the isPartOf reference, in accordance with an example
embodiment; and

FIG. 38 is a block diagram of an example computer system
on which methodologies described herein may be executed,
in accordance with an example embodiment.

DETAILED DESCRIPTION

Example methods and systems of transforming ontologies
of semantic web languages are described. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understand-
ing of example embodiments. It will be evident, however, to
one skilled in the art that the present embodiments may be
practiced without these specific details.

In the present disclosure, a solution is provided that may
allow for the incorporation of RDFS ontologies into the
familiar environment of conventional software engineers.
Thus, software developers are relieved from learning the spe-
cifics of ontology languages and are enabled to build software
on the ontology at the same time. More specifically, the solu-
tion may provide a flexible transformation from RDFS to
Ecore. Ecore is the UML “dialect” of the wide-spread soft-
ware engineering environment Eclipse. UML is a wide-
spread software engineering modeling language. The trans-
formation may seamlessly incorporate and import a given
RDFS ontology into Eclipse. A wizard may guide the devel-
oper through alternative ways of importing a given ontology
and adjusting configuration settings for the transformation.

In some embodiments, a computer-implemented method
may comprising enabling a user to adjust configuration set-
tings for a transformation of primitives of a Semantic Web
ontology language into primitives of a software modeling
language, storing the adjusted configuration settings on a
storage device, performing, by a machine, the transformation
of primitives of the Semantic Web ontology language into
primitives of the software modeling language using the
adjusted configuration settings stored on the storage device,
and enabling a selection of the adjusted configuration settings
stored on the storage device for use in a subsequent transfor-
mation of primitives of the Semantic Web ontology language
into primitives of the software modeling language.

In some embodiments, performing the transformation may
comprise generating Object Constraint Language (OCL) con-
straints for primitives of the software modeling language. In
some embodiments, the semantic web language is Resource
Description Framework Schema (RDFS). In some embodi-
ments, the semantic web language is Web Ontology Lan-
guage (OWL). In some embodiments, the software modeling
language is Ecore. In some embodiments, the primitives of
the Semantic Web language comprise classes, properties,
individuals, and resources. In some embodiments, the method
may further comprise enabling the user or another user to
adjust the adjusted configuration settings for use in the sub-
sequent transformation of primitives of the Semantic Web
ontology language into primitives of the software modeling
language.

In some embodiments, a system may comprise a machine
having at least one processor, and an ontology transformation
module on the machine. The ontology transformation module
may be configured to enable a user to adjust configuration
settings for a transformation of primitives of a Semantic Web
ontology language into primitives of a software modeling
language, store the adjusted configuration settings on a stor-
age device, perform the transformation of primitives of the
Semantic Web ontology language into primitives of the soft-
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ware modeling language using the adjusted configuration
settings stored on the storage device, and enable a selection of
the adjusted configuration settings stored on the storage
device for use in a subsequent transformation of primitives of
the Semantic Web language into primitives of the software
modeling language.

In some embodiments, the ontology transformation mod-
ule is further configured to generate Object Constraint Lan-
guage (OCL) constraints for primitives of the software mod-
eling language. In some embodiments, the semantic web
language is Resource Description Framework Schema
(RDFS). In some embodiments, the semantic web language is
Web Ontology Language (OWL). In some embodiments, the
software modeling language is Ecore. In some embodiments,
the primitives of the Semantic Web language comprise
classes, properties, individuals, and resources. In some
embodiments, the ontology transformation module may be
further configured to enable the user or another user to adjust
the adjusted configuration settings for use in the subsequent
transformation of primitives of the Semantic Web ontology
language into primitives of the software modeling language.

In some embodiments, a non-transitory machine-readable
storage device may store a set of instructions that, when
executed by at least one processor, causes the at least one
processor to perform the operations and method steps dis-
cussed within the present disclosure.

FIG. 1 is a network diagram illustrating a client-server
system, in accordance with an example embodiment. A plat-
form (e.g., machines and software), in the example form of an
enterprise application platform 112, provides server-side
functionality, via a network 114 (e.g., the Internet) to one or
more clients. FIG. 1 illustrates, for example, a client machine
116 with programmatic client 118 (e.g., a browser, such as the
INTERNET EXPLORER browser developed by Microsoft
Corporation of Redmond, Wash. State), a small device client
machine 122 with a small device web client 120 (e.g., a
browser without a script engine), and a client/server machine
117 with a programmatic client 119.

Turning specifically to the example enterprise application
platform 112, web servers 124 and Application Program
Interface (API) servers 125 may be coupled to, and provide
web and programmatic interfaces to, application servers 126.
The application servers 126 may be, in turn, coupled to one or
more database servers 128 that facilitate access to one or more
databases 130. The web servers 124, Application Program
Interface (API) servers 125, application servers 126, and
database servers 128 may host cross-functional services 132.
The application servers 126 may further host domain appli-
cations 134.

The cross-functional services 132 provide services to users
and processes that utilize the enterprise application platform
112. For instance, the cross-functional services 132 may pro-
vide portal services (e.g., web services), database services
and connectivity to the domain applications 134 for users that
operate the client machine 116, the client/server machine 117
and the small device client machine 122. In addition, the
cross-functional services 132 may provide an environment
for delivering enhancements to existing applications and for
integrating third-party and legacy applications with existing
cross-functional services 132 and domain applications 134.
Further, while the system 100 shown in FIG. 1 employs a
client-server architecture, the embodiments of the present
invention are of course not limited to such an architecture, and
could equally well find application in a distributed, or peer-
to-peer, architecture system.

FIG. 2 is a block diagram illustrating enterprise applica-
tions and services in an enterprise application platform 112,
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in accordance with an example embodiment. The enterprise
application platform 112 includes cross-functional services
132 and domain applications 134. The cross-functional ser-
vices 132 may include portal modules 140, relational data-
base modules 142, connector and messaging modules 144,
Application Program Interface (API) modules 146, and
development modules 148.

The portal modules 140 may enable a single point of access
to other cross-functional services 132 and domain applica-
tions 134 for the client machine 116, the small device client
machine 122 and the client/server machine 117. The portal
modules 140 may be utilized to process, author and maintain
web pages that present content (e.g., user interface elements
and navigational controls) to the user. In addition, the portal
modules 140 may enable user roles, a construct that associ-
ates a role with a specialized environment that is utilized by a
user to execute tasks, utilize services and exchange informa-
tion with other users and within a defined scope. For example,
the role may determine the content that is available to the user
and the activities that the user may perform. The portal mod-
ules 140 include a generation module, a communication mod-
ule, a receiving module and a regenerating module. In addi-
tion the portal modules 140 may comply with web services
standards and/or utilize a variety of Internet technologies
including Java, J2EE, SAP’s Advanced Business Application
Programming Language (ABAP) and Web Dynpro, XML,
JCA,JAAS, X.509, LDAP, WSDL, WSRR, SOAP, UDDI and
Microsoft NET.

The relational database modules 142 may provide support
services for access to the database(s) 130, which includes a
user interface library 136. The relational database modules
142 may provide support for object relational mapping, data-
base independence and distributed computing. The relational
database modules 142 may be utilized to add, delete, update
and manage database elements. In addition, the relational
database modules 142 may comply with database standards
and/or utilize a variety of database technologies including
SQL, SQLDBC, Oracle, MySQL, Unicode, IDBC.

The connector and messaging modules 144 may enable
communication across different types of messaging systems
that are utilized by the cross-functional services 132 and the
domain applications 134 by providing a common messaging
application processing interface. The connector and messag-
ing modules 144 may enable asynchronous communication
on the enterprise application platform 112.

The Application Program Interface (API) modules 146
may enable the development of service-based applications by
exposing an interface to existing and new applications as
services. Repositories may be included in the platform as a
central place to find available services when building appli-
cations.

The development modules 148 may provide a development
environment for the addition, integration, updating and exten-
sion of software components on the enterprise application
platform 112 without impacting existing cross-functional ser-
vices 132 and domain applications 134.

Turning to the domain applications 134, the customer rela-
tionship management application 150 may enable access to
and may facilitate collecting and storing of relevant person-
alized information from multiple data sources and business
processes. Enterprise personnel that are tasked with develop-
ing a buyer into a long-term customer may utilize the cus-
tomer relationship management applications 150 to provide
assistance to the buyer throughout a customer engagement
cycle.

Enterprise personnel may utilize the financial applications
152 and business processes to track and control financial
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6

transactions within the enterprise application platform 112.
The financial applications 152 may facilitate the execution of
operational, analytical and collaborative tasks that are asso-
ciated with financial management. Specifically, the financial
applications 152 may enable the performance of tasks related
to financial accountability, planning, forecasting, and manag-
ing the cost of finance.

The human resource applications 154 may be utilized by
enterprise personnel and business processes to manage,
deploy, and track enterprise personnel. Specifically, the
human resource applications 154 may enable the analysis of
human resource issues and facilitate human resource deci-
sions based on real time information.

The product life cycle management applications 156 may
enable the management of a product throughout the life cycle
of the product. For example, the product life cycle manage-
ment applications 156 may enable collaborative engineering,
custom product development, project management, asset
management and quality management among business part-
ners.

The supply chain management applications 158 may
enable monitoring of performances that are observed in sup-
ply chains. The supply chain management applications 158
may facilitate adherence to production plans and on-time
delivery of products and services.

The third-party applications 160, as well as legacy appli-
cations 162, may be integrated with domain applications 134
and utilize cross-functional services 132 on the enterprise
application platform 112.

The Resource Description Framework (RDF) is a formal
language for describing structured information. It allows
making statements about resources in regards to their relation
to other resources with the intention to allow further process-
ing and re-combination of the information represented by
these resources, which may be done in the form of a directed
multi-graph, where vertices and edges are labeled with iden-
tifiers (RDF may use uniform resource idendifiers (URIs) or
internationalized resource identifiers (IRIs) as identifiers).

An RDF graph may be described by the collection of its
edges, where the edge is given in the form of a triple: a
subject-predicate-object expression, where the predicate rep-
resents the edge and hence the relation between the vertices,
i.e., subject and object. RDF graphs can thus be serialized as
a collection of all their triples. With N3, N-Triples and Turtle,
several syntaxes exist that allow serialization of RDF in triple
form. However, due to well established tool and program-
ming library support for XML, the main syntax for RDF is the
XML-based serialization RDF/XML.

With RDF, individuals can be specified and set into relation
to each other:

ex:martin ex:is Writing ex:aDiplomaThesis.

Individuals can be set into relation with data values (also
called literals), and it is possible to assign types to literals:

ex:aDiplomaThesis ex:hasTitle “Semantic Web to Ecore” .
ex:aDiplomaThesis ex:dueDate “2011-12-31" xsd:date .

Assigning a type to literals allows for proper interpretation by
software applications processing RDF documents. Types can
also be assigned to resources:
ex:martin rdfitype ex:Student.

Assigning a type to resources signalizes that these entities
share common traits and marks these entities as elements of a
certain aggregation. This aggregation may be called a class.
Typically, the resources which are used as predicates in triples
express a relationship between individuals, classes or literals.
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It seems inappropriate to consider these resources as indi-
viduals or classes. RDF provides the class name rdf:Property
for the class of all relations, i.e., properties.

ex:hasTitle rdf:type rdf:property.

With these primitives, it is possible to express factual
knowledge, or assertional knowledge, about individuals, but
it is not possible to express more generic knowledge. With
RDF, we cannot state that, e.g., if someone writes a master
thesis, then that person is a student. This kind of knowledge is
often called terminological knowledge or schema knowledge.
RDF Schema (RDFS) was introduced by the W3C as a solu-
tion to this problem. It extends the RDF vocabulary with basic
elements for terminological knowledge representation and
ontology authoring. This vocabulary is generic and not bound
to a specific application area. Its pre-defined semantics (in
form of axiomatic rules) allow specifying the semantics of
user-defined vocabularies.

RDFS provides common class names for the classes which
were implicit in RDF, e.g., rdfs:Class for the class of all
classes, rdfs:Resource for the class of all Resources, etc. Also,
several pre-defined properties were introduced to allow for
subclassing, declaring subproperties, and/or restricting prop-
erty values to a certain domain and range. For instance, the
fact that any Student is also a person can be expressed like
this:

ex:Student rdfs:subClassOf ex:Person.

A similar relationship to the subclass relationship exists also
for properties:
ex:isHappilyMarriedTo
riedTo.
The above triple states, that every individual who is happily
married to another individual is also just married to another
individual. So by stating

ex:martin ex:isHappilyMarriedTo ex:laure,
we can deduce that

ex:martin ex:isMarriedTo ex:laure
is also a valid statement.

If we would want to express that every individual who is
married to another individual must implicitly be a person, we
can make use of the RDFS vocabulary rdfs:domain and rdfs:
range:

rdfs:subPropertyOf  ex:isMar-

ex:isMarriedTo rdfs:domain ex:Person .
ex:isMarriedTo rdfs:range ex:Person .

This point often leads to confusion among ontology novices,
as the above statements do not prevent linking individuals by
the property ex:isMarriedTo who aren’t persons, but rather
implicitly declare these individuals as persons if set into
relation via ex:isMarried To. This is intuitively opposed to the
type-checking notion of nowadays software programming
languages.

With RDF(S), it is possible to model simple ontologies and
to derive implicit knowledge. However, its expressivity is
limited and complex knowledge can often not be represented
by RDF(S). To address this problem, the W3C introduced the
Web Ontology Language (OWL). Like other languages that
allow the modeling of complex knowledge, OWL is based on
formal logic and, hence, supports logic reasoning. To address
the computational complexities inherent to logic reasoning
on complex knowledge, three sublanguages (or species) of
OWL were designed: OWL Full, OWL DL and OWL Lite.

OWL Full is the most expressive sublanguage. It contains
OWL DL and OWL Lite, as well as all of RDF(S). Because of
its undecidability, few software tools are able to handle OWL
Full.
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OWL DL is based on description logic and is hence decid-
able. It is widely supported by software tools; several reason-
ers are available for OWL DL, such as Pellet, HermiT,
FaCT++ or TrOWL. In OWL DL, the use of RDF(S) language
constructs is restricted. For instance, rdfs:Class and rdf:prop-
erty are not allowed. Also, it must be clearly distinguished
between classes, instances and the different types of proper-
ties (see below).

OWL Lite is the least expressive and is contained by OWL
Full and OWL DL. Evidently, even more restrictions have to
be respected in comparison to OWL Full and OWL DL.

In addition to the syntaxes known from RDF(S), the W3C
specified the XML presentation syntax for OWL, which is
adapted to the OWL language constructs and provides better
readability and less overhead over the much more generic
RDF/XML syntax while maintaining the compatibility
advantages of XML. RDF/XML is the only normative syntax.

As noted above, OWL Full contains all of RDF(S). The
higher expressive power of OWL over RDF(S) is achieved by
the addition of new vocabulary with pre-defined semantics.
OWL provides its own vocabulary for class and property
definition.

Classes can be defined by using owl:Class, as an enumera-
tion of their instances and as combinations of other classes,
viz. as the union, the intersection and the complement of
another class. The latter definition is based on formal logic
constructs and also called complex class definition. Further
complex class definitions involve property restrictions and
are derived from, e.g., the universal quantifier, the existential
quantifier and cardinalities.

For properties, two pre-defined classes exist: Properties of
type owl:ObjectProperty connect individuals with individu-
als, while properties of type owl:DatatypeProperty connect
individuals with data values, i.e., with elements of datatypes.

OWL allows specifying certain characteristics of proper-
ties. This includes domain and range like in RDF(S), but also
includes characteristics like transitivity, symmetry, function-
ality and inverse functionality. OWL provides certain classes
with special semantics; owl: Thing is the class of all instances
and as such the superclass of all classes, while owl:Nothing is
the empty class, i.e., it contains no instances. It is the subclass
of all classes. If classes are inferred to be equivalent to this
class, they are denoted to be “unsatisfiable”, which indicates
an erroneous contradiction in the ontology.

OWL was subsequently extended by the specification of
OWL 2, which introduced new modeling primitives as well as
so-called profiles OWL 2 EL,, OWL 2 QL, and OWL 2 RL,
which allow for an even more fine-grained trade-off between
complexity and expressivity.

Furthermore, the W3C introduced the functional-style syn-
tax for the definition of OWL 2 in the W3C specification
documents. This functional-style syntax uses a prefix nota-
tion and is given as a formal grammar. Because of this, it is
considered to be a clean, easily readable as well as easily
parsable syntax. The only normative syntax is still RDF/
XML.

Model-Driven Engineering (MDE) refers to software engi-
neering techniques that use software models as primary engi-
neering artifacts. Below, we highlight relevant key technolo-
gies of MDE.

The Meta Object Facility (MOF) is a standard for model-
driven engineering issued by the Object Management Group
(OMG). Itis, at its core, an architecture for meta-metamodels,
which originated in the OMG’s need for a closed metamodel
for UML’s class modeling concepts. In addition, the MOF
specification and its associated standards contain facilities for
model processing, notably the XMIL. Metadata Interchange
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(XMI) standard, which is commonly used as an interchange
format for MOF-related models like UML models. Thus,
MOF can be viewed as standard for building metamodels. It
acts as a bridge between different metamodels, so that models
based on MOF-compliant metamodels can share processing
facilities (e.g., model transformation) or storage facilities like
model repositories.

MOF is designed as a four layer architecture. FIG. 3 illus-
trates a four layer architecture 300 of MOF, in accordance
with an example embodiment. Every layer represents another
level of abstraction, with a meta-metamodel at the top, the M3
layer. The metametamodel on layer M3 is also called MOF
metamodel. FIG. 4 illustrates a simplified view of the MOF
metamodel 400, in accordance with an example embodiment.
This layer is used to define the metamodels on layer M2, as
well as the meta metamodel on layer M3 itself. Layer M2 is
the layer for metamodels such as UML or BPMN. It is the
definition ofhow models of layer M1 are specified. M1 is also
called the model layer. It represents realizations of one or
more metamodels and comprises concrete physical or logical
models, such as an UML class diagram of an application, and
describes the format and semantics of data. The bottom layer,
called data layer or MO layer, contains the actual data, i.e.,
objects or instances.

MOF is aclosed, strict meta-modeling architecture: closed,
because its meta-metamodel (M3 layer) conforms to itself;
strict, because every model element on every layer is strictly
an instance of a model element of the layer above.

MOF uses classes in the sense of object-oriented program-
ming to define model elements which are used to describe
metamodels of common modeling languages, such as UML.
A subset of those elements is also known as Essential MOF
(EMOF, as opposed to CMOF or Complete MOF). The
Eclipse Modeling Framework (EMF) has specified a meta-
model called Ecore, which is virtually compatible to EMOF.

The Eclipse Modeling Framework (EMF) is an open
source framework based on the Eclipse Platform with the
purpose of code generation with the help of structured data
models. By default, the generated code is Java code. The
generated Java application is able to create instances of the
given data model as well as query, manipulate and serialize
these instances.

While EMF models are canonically represented with the
Ecore metamodel (see below), actual models are usually
specified using XML Schema, annotated Java interfaces or
UML (several UML tools are supported). A definition of the
model by XML Schema provides the user with the benefit of
obtaining an adapted and potentially optimized XML serial-
ization format, while the two other methods are closer to the
EMOF notion of Ecore. The specified models are subse-
quently used to generate an Ecore model. Models can be
specified directly in Ecore as well, by means of a simple
tree-based editor included in EMF. Furthermore, there is a
Java API to create a model dynamically (which we are using
for the proof-of-concept implementation and for future full-
edged implementations of the transformation proposed in this
work).

Ecore provides a subset of MOF concepts and hence of
UML class modeling concepts. In fact, experience drawn
from the development of Ecore has substantially influenced
the definition of EMOF. Ecore and EMOF are limited to
classes, attributes and relations. Ecore and EMOF are closed
metamodels, i.e., they conform to themselves, so Ecore is
itself an EMF model. In a typical use case, Ecore is found at
the M2 and M3 levels simultaneously, i.e., modelers specify
their user models with Ecore, omitting the definition of a
proper metamodel.
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As noted above, with Ecore you can describe your domain
with basically the same class modeling concepts as in UML:
The metamodel class EClass is used to represent a class with
aname and zero or more attributes and references, EAttribute
is used to represent an attribute with a name and a datatype,
EReference is used to represent one end of an association
between two classes and has a name, a containment flag and
a reference type, and finally EDatatype is used to represent a
datatype. FIG. 5 illustrates a simplified version of the Ecore
metamodel 500, in accordance with an example embodiment.

Because we make frequent use of the term EStructuralFea-
ture in this work, we would like to add that both EAttribute
and EReference are subclasses of EStructuralFeature in the
full Ecore metamodel.

As stated above, one benefit of EMF is code generation.
Based on your data model, EMF may generate application
mode, which can be modified and customized to the needs of
the developer. Subsequent changes to the model may be
merged to existing code modifications as transparently as
possibly. Along with the actual application, EMF may also
generate unit tests, which help to secure the customization
process. EMF provides also the possibility to generate a tree-
based editor for your model, so you can manually create and
modify instances of the model. The components of this editor
can be reused to develop a more sophisticated editor.

Further benefits of using EMF are model change notifica-
tion, transparent model persistence (in general, Ecore models
as well as instances of Ecore models are serialized in XMI,
but other ways and formats can be conceived), data integra-
tion and sharing, model validation, and an efficient reflective
APL

The Object Constraint Language (OCL) is a declarative
language for constraint and query expressions on UML and
MOF (meta-) models. It is part of the Unified Modeling
Language (UML) standard, but the OMG has defined subsets
of OCL which can be applied to any MOF-compliant and
EMOF-compliant models. OCL can be applied at different
layers of the MOF four layer architecture 300 in FIG. 3. OCL
is also a key-component of the OMG’s standard for model
transformations, QVT (Query/View/Transformation).

An OCL constraint may be structured into a context, zero
or more stereotypes, and the actual OCL expressions. The
context defines the scope of the constraint statement, e.g., a
class, an interface etc. The stereotype determines which type
of expression is applied to the context, i.e., invariants, pre-
conditions, postconditions, etc. The actual expressions are
specified in a syntax which is based object-oriented program-
ming languages, and do usually resemble predicate logic
expressions. If, for example, one would like to express, thata
person is always younger than its parents, the OCL constraint
may be composed as follows:

context Person inv:self. Parent—for All (ele.age>self.age)
Several different types of constraints can be distinguished:
invariants; preconditions and postconditions; initial and
derived values; definitions of new attributes and operations;
model queries; and guards for state transitions.

Concepts of Semantic Web languages RDF(S) and OWL
differ from Ecore. These differences are designated focal
points of any transformation effort.

All things described in RDF(S) are called “resource” and
are hence of type rdfs:Resource. The way this resource is used
influences the representation of this resource in the Ecore
model. Resources with type rdfs:Class are candidates for an
EClass in Ecore:

ex:Student rdf:type rdfs:Class.
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Resources with type rdfs:Property are candidates for an
EReference or EAttribute in Ecore:

ex:hasTitle rdf:type rdf:Property.

There is no strict separation between classes and instances
(“individuals™) in RDF(S) like there is in OWL DL. All
resources of type rdfs:Class are classes, all resources of type
rdfs:Property are properties. Following these definitions, all
resources whose type is different from the above types or
which have no type at all could be considered individuals.

In the case where none of these sets (classes, properties,
individuals) overlap, the transformation can be handled in a
similar way as the transformation from OWL DL to Ecore.
However, a transformation from RDF(S) must also consider
the following cases:

Class+Individual Any resource which is of type rdfs:Class
and at least of one other type except rdfs:Property at the
same time.

Class+Property Any resource which is of type rdfs:Class
and of type rdfs: Property, but not of any other type at the
same time.

Property+Individual Any resource which is of type rdfs:
Property and at least of one other type except rdfs:Class
at the same time.

Class+Property+Individual Any resource which is of type
rdfs:Class, of type rdfs:Property and at least of one other
type at the same time.

In OWL, the classes owl: Thing and owl:Nothing exist by
default, where owl: Thing is the superclass of all classes and
owl:Nothing is the subclass of all classes. This enforces a
class hierarchy with exactly one class at the top and one class
at the bottom. In Addition, owl: Thing serves as the set of all
individuals.

Representations for owl:Thing and owl:Nothing may be
created in the Ecore world, and especially owl: Thing may be
used to model common traits which are shared by all classes
and instances like its IRI. As in RDF(S), comparable pre-
defined classes do not exist. A transformation from RDF(S) to
Ecore has to provide other means to model common traits.

RDF(S) and OWL are both based on the open world
assumption (OWA). In an open world, a statement is not per se
false just because it is not known to be true. In contrast, when
adopting the closed world assumption (CWA), everything
that is notknown to be true is false. Ecore, like many software
engineering languages, is based on the closed world assump-
tion. A transformation from Semantic Web ontologies to
Ecore must consider this difference.

The term “Unique Name Assumption” (UNA) was coined
in the context of description logic and ontologies. It refers to
the assumption that different names refer to different entities.
InRDF(S)and OWL, an IRI serves as identifier or name of an
entity. As the unique name assumption is not valid in RDF(S)
and OWL, two different IRIs can denote identical entities. In
OWL, entities have to be explicitly declared different or iden-
tical to another entity; although RDF(S) does not make the
unique name assumption either, no means to this purpose
exist.

In Ecore, classes are organized in packages and identified
by the class name. Inside a package, the class name must be
unique. Different class names denote two separate classes.
References and attributes are attached to a specific class.
Inside this class, the names for references and attributes must
be unique, and different names denote again separate entities.
In consequence, one could state that Ecore makes the unique
name assumption. Thus, a transformation from Semantic
Web ontologies to Ecore may take this discrepancy into
account.
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RDF(S) and OWL, as opposed to Ecore, are both designed
for information exchange and publication on the Web. Con-
sequently, every entity and even modeling primitives are
identified are identified via IRIs. Ecore and comparable soft-
ware engineering facilities do not know a comparably con-
sistent identification mechanism and are not designed for
knowledge publication on the Web. Any transformation from
Semantic Web languages to Ecore has to provide the possi-
bility to preserve these features to a certain degree.

While in Ecore and comparable software modeling lan-
guages, references and attributes are attached to a specific
class, properties are first-class citizens in RDF(S) and OWL
and exist “on their own”. As a consequence, domain and
range specifications are not a limitation as to which individu-
als are allowed to be connected via the property in question;
by connecting two individuals via a property, the type of the
domain or range is “assigned” to the individuals.

In OWL, a property is either an object property, which
connects individuals to other individuals, or a data property,
which connects individuals to typed or untyped literals.
RDF(S) does not make this distinction and allows the con-
nection to individuals and literals via one and the same prop-
erty. Also, the scope of application of properties in OWL is
wider than in RDF(S). In the latter, properties are merely
names which are attached to a relation of two resources. In
OWL, it is possible to further qualify these relations with
characteristics like symmetry, transitivity, reflexivity etc. In
addition, properties can be used in OWL to further describe
classes, e.g., by restricting the membership of a class in
regards to the quality or the quantity of the relations of the
members of the class concerning specific properties.

Another notable difference between RDF(S) and OWL DL
is the case of properties which are at the same time classes
(i.e., of type rdfs:Class).

In Semantic Web languages, certain aspects of properties
can be specified in form of restrictions. Typically, these
restrictions are applied to the domain and range of a property;
OWL permits therestriction of the cardinality as well, i.e., the
number of values a property may have for a particular indi-
vidual. Restrictions allow inferring of additional information.
As an example, if the range of a property hasFather is
restricted to a maximum of one value, and Daedalus and
Daidalos are known to be the father of Icarus, it can be
inferred that Daidalos and Daedalus are identical, even if
there is no statement asserting the sameness of both individu-
als.

The corresponding concept in Ecore is OCL constraints
embedded into Ecore model entities. These constraints
specify conditions which may not be violated; no additional
information can be inferred from these constraints. In the
above example, if Daedalus and Daidalos are both assigned as
a value to Icarus’ hasFather reference, the model would
become invalid.

OWL and Ecore do not completely overlap in terms of
expressiveness. As RDF(S) is much less expressive than
OWL, great differences are to be expected in this domain
between the transformation from OWL to Ecore and the
transformation from RDF(S) to Ecore.

RDF(S) does not support cardinality constraints for prop-
erties. The cardinality is always implicitly constrained to 0..*.
This is also the default behavior in OWL. However, in OWL,
it is possible to restrict the membership of a class to members
which fulfill specific cardinality conditions. In the Ecore
world, the cardinality of attributes is by default set to 0..1,
which is also what a software engineer would intuitively
expect, e.g., for an attribute like age. By maintaining the
implicit default cardinality from the ontology, the resulting
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Ecore model would, in the worst case, be cluttered with
attributes which allow multiple values.

Semantic Web ontologies contain terminological knowl-
edge as well as assertional knowledge. As entities may belong
to both types of knowledge at the same time (at least in
RDF(S) and OWL Full), no strict separation exists in RDF(S)
and OWL. Ecore on the other hand, strictly separates its
model in several layers, with separate files, diagrams etc.

Formal semantics form the basis of RDF(S) and OWL.
OWL DL is actually a description logic. This allows for
entailment of factual knowledge in RDFS or OWL ontologies
by using rule-based inference engines for RDF(S) and so-
called reasoners for OWL. These reasoners may perform
subsumption checking, consistency checking, and instance
classification. Via subsumption checking, it is possible to
infer super- and subclass relations which are not explicitly
specified in an ontology. For example, if in OWL a class
Person is defined as the union of two classes Man and Woman,
areasoner will infer that Person is the superclass of both these
classes. Consistency checking allows for detection of contra-
dictions in an ontology. For example, if an individual is speci-
fied to be member of two disjoint classes, a reasoned will infer
this to be inconsistent. With instance classification, it is pos-
sible to determine if an instance is a member of a specific class
without being explicitly assigned to this class.

FIG. 6 is a block diagram of an ontology transformation
system 300, in accordance with an example embodiment. The
ontology transformation system 300 may comprise an ontol-
ogy transformation module 620 on a machine having at least
one processor. In some embodiments, the ontology transfor-
mation module 620 may be incorporated into the enterprise
application platform 112 (e.g., reside on one or more of the
application servers 126). The ontology transformation mod-
ule 620 may be configured to enable a user 610 on a device
(e.g., any of machines 116, 117, and 122 in FIG. 1) to adjust
configuration settings for a transformation of primitives of a
Semantic Web ontology language into primitives of a soft-
ware modeling language. The ontology transformation mod-
ule 620 may also be configured to store the adjusted configu-
ration settings on a storage device. For example, the adjusted
configuration settings may be stored in a configuration file in
one or more database(s) 630, which may be accessed by the
ontology transformation module 620 for later retrieval and
use. In some embodiments, the database(s) 630 may be incor-
porated into the database(s) 130 in FIG. 1. However, it is
contemplated that other configurations are also within the
scope of the present disclosure. The ontology transformation
module 620 may further be configured to perform the trans-
formation of primitives of the Semantic Web ontology lan-
guage into primitives of the software modeling language
using the stored adjusted configuration settings. The ontology
transformation module 620 may also be configured to enable
a selection of the stored adjusted configuration settings for
use in a subsequent transformation of primitives of the
Semantic Web ontology language into primitives of the soft-
ware modeling language.

In some embodiments, the ontology transformation mod-
ule 620 is further configured to generate Object Constraint
Language (OCL) constraints for primitives of the software
modeling language. In some embodiments, the semantic web
language is Resource Description Framework Schema
(RDFS). In some embodiments, the semantic web language is
Web Ontology Language (OWL). In some embodiments, the
software modeling language is Ecore. In some embodiments,
the primitives of the Semantic Web language comprise
classes, properties, individuals, and resources. In some
embodiments, the ontology transformation module may be
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further configured to enable the user or another user to adjust
the adjusted configuration settings for use in the subsequent
transformation of primitives of the Semantic Web ontology
language into primitives of the software modeling language.
The ontology transformation module 620 may also be con-
figured to perform any of the features disclosed herein with
respect to ontology transformation.

FIG. 7 is a flowchart illustrating a method 700 of trans-
forming a Semantic Web language ontology into a software
meta-model and model, in accordance with an example
embodiment, in accordance with an example embodiment. It
is contemplated that the operations of method 700 may be
performed by a system or modules of a system (e.g., ontology
transformation module 620 in FIG. 6).

At operation 710, a user may be enabled to adjust configu-
ration settings for a transformation of primitives of' a Seman-
tic Web ontology language into primitives of a software mod-
eling language. In some embodiments, adjusting the
configuration settings may include selecting an option to
generate Object Constraint Language (OCL) constraints for
primitives of the software modeling language. It is contem-
plated that other configuration settings are also within the
scope of the present disclosure. Other examples of configu-
ration settings will be discussed in further detail below.

At operation 720, the adjusted configuration settings may
be stored on a storage device. In some embodiments, the
adjusted configuration settings may be stored along with
other configuration settings in one or more configuration file.

At operation 730, the transformation of primitives of the
Semantic Web ontology language into primitives of the soft-
ware modeling language may be performed using the
adjusted configuration settings stored on the storage device.

At operation 740, it may be determined whether a subse-
quent transformation of primitives of the Semantic Web
ontology language into primitives of the software modeling
language will be performed.

If it is determined that a subsequent transformation will be
performed, then the method 700 may proceed to operation
750, where the user, or another user, may be enabled to select
the adjusted configuration settings stored on the storage
device for use in the subsequent transformation of primitives
of'the Semantic Web ontology language into primitives of the
software modeling language.

The method 700 may then return to operation 710, where
the user may be enabled to adjust the selected configuration
settings for use in the subsequent transformation.

If it is determined at operation 740 that a subsequent trans-
formation will not be performed, then the method 700 may
come to an end.

It is contemplated that any of the other features described
within the present disclosure may be incorporated into
method 700. Furthermore, in some embodiments, all of the
operations in method 700 may be performed in the same
session. However, in some embodiments, the some of the
operations may be performed in separate sessions. For
example, in some embodiments, the adjusting of configura-
tion settings (operation 710), storing of configuration settings
(operation 720), and performing of the transformation (op-
eration 730) may be performed while the user is accessing the
ontology transformation module 620. The user may then stop
use of the ontology transformation module 620 (e.g., log off,
shut down computing device being used to access the ontol-
ogy transformation module 620). Later, the user may return to
using the ontology transformation module 620 (e.g., turn
computing device back on, log on), at which time the selec-
tion of the stored adjusted configuration settings (operation
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750) may be performed during a separate session as the pre-
viously performed operations.

FIG. 8 is a flowchart illustrating another method 800 of
transforming a Semantic Web language ontology into a soft-
ware meta-model and model, in accordance with an example
embodiment. It is contemplated that the operations of method
800 may be performed by a system or modules of a system
(e.g., ontology transformation module 620 in FIG. 6).

At operation 810, the ontology to be transformed may be
selected. The selection may comprise a file containing the
ontology or a URL leading to an ontology. In some embodi-
ments, the ontology is either an RDF(S) ontology or an OWL
ontology.

Atoperation 820, the selected ontology may be checked for
consistency. In consistency checking, the terminal knowledge
(TBox) and assertional knowledge (ABox) of an ontology
may be tested for contradictions. For example, if an indi-
vidual is specified to be member of two disjoint classes, a
reasoner may infer this to be inconsistent. If the given ontol-
ogy is found to be inconsistent at operation 830, then the
transformation process may aborted.

If the given ontology is found to be consistent at operation
830, then the method 800 may proceed to operation 840,
where subsumption checking may be performed. The sub-
sumption checking may allow for the inference of super- and
sub-class relations which are not explicitly specified in an
ontology. For example, if, in OWL, a class Person is defined
as the union of two classes Man and Woman, a reasoner may
infer that Person is the superclass of both these classes.

At operation 850, instance classification may be per-
formed. In instance classification, it may be determined if an
individual (also called instance) is a member of a specific
class without being explicitly assigned to this class.

At operation 860, based on the result of the subsumption
checking and the instance classification, the ontology may be
extended with helper classes in order to have an explicit
manifestation of all implicit knowledge, as well as to ensure
that no instances are members of classes with no sub- or
super-class relationship.

At operation 870, the user may be able to make transfor-
mation decisions, both general and entity specific (classes,
properties, individuals), each one contributing either to infor-
mation preservation or to obtaining simpler and cleaner soft-
ware models. The user may adjust configuration settings for
the transformation accordingly.

At operation 880, based on the transformation decisions,
the actual transformation of all primitives of the selected
ontology may be performed.

At operation 890, the result of the transformation may be
stored. The result may be stored in two places, one containing
the former TBox representing the meta-model in Ecore ter-
minology, the other containing the former ABox, i.e., the
instance of the meta-model.

It is contemplated that any of the other features described
within the present disclosure may be incorporated into
method 800.

In some embodiments of the transformation of RDF(S)
modeling concepts or primitives, every modeling concept or
primitive may be transformed to an appropriate counterpart in
the Ecore world in such a way that maximizes adjustability
and information preservation.

A resource is considered to be a simple resource if it is
exclusively a class, a property or an individual. Conditions
that may determine if a resource falls into the respective
category are specified below.

Class may be any resource which is of type rdfs:Class, but
not of any other type. Classes in RDF(S) ontologies can be
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mapped to corresponding EClasses. The class hierarchy can
be maintained by mapping the rdfs:subClassOf property to
the eSuperTypes reference in EClass.

The class hierarchy might contain classes which are of no
interest to the software engineer, and which he might not want
to retain in his Ecore model. In order to enable him to repeat-
edly apply the transformation without having to erase the
respective classes each time by hand, the engineer can specify
for each class if he wants to retain this class for transformation
or not. If he decides to omit a class, all its subclasses will not
be transformed either. This is true as well for individuals
which are members of one or more of the omitted classes, and
for properties whose range or domain class is omitted.

As mentioned above, RDF(S) does not provide a common
superclass for all classes, in contrast to OWL (owl:Thing).
For several reasons which are described in the respective
sections below, such a common top-level class may be intro-
duced for the transformation. In analogy to OWL, this class
may be called rdfs2ecore: Thing.

In RDF(S), IRIs may be used to precisely identify
resources and therefore classes. No corresponding notion
exists in Ecore. Elements in a model are, at best, identified by
memory pointers or by GUIDs.

When an Ecore model is used to generate Java code, a
combination of the name attribute of an EClass with the name
attribute of the EPackage which contains the EClass may be
used to form the fully qualified class name of the generated
Java class. In Java, a class may thus be identified by its fully
qualified class name. An algorithm to map the URI of an
XML namespace to the attributes of an EPackage and to a
fully qualified Java package name may be given. This algo-
rithm can serve as a default method for creation of EPackages
within the transformation process, as long as the class in
question is associated with a namespace. If no namespace is
associated to the class, the necessary EPackage attributes
either have to be specified by the software engineer before-
hand or generated automatically.

As the above mentioned algorithm does not represent an
injective function, and as resources are not required to be part
of'any namespace, it is still desirable to maintain the original
IRI elsewhere in the Ecore model. The concept of annotations
proposed by Ecore can be used to embed the IRI into an
EClass. For a class ex:Pizza, this annotation may look like
this:

Source = “http://www.sap.com/ow]2ecore#EntityAnnotation”
Key = “nsPrefix”

Value = “ex”

Key = “nsIRI”

Value = “http://example.org#”

Key = “LocalName”

Value  =“Pizza”

Key =“IRI”

Value = “http://example.org#Pizza”

A simplified algorithm for the transformation of classes

may be as follows:

1. Create an empty Ecore metamodel.

2. Create an instance of EClass for the common top-level
class and add it to the Ecore metamodel.

3. For each top class of the ontology’s class hierarchy (i.e.,
the classes which have no superclasses), create an
instance of EClass and add it to the Ecore metamodel.

4. Add the common top-level class to the eSuperTypes
reference of all of the EClass instances corresponding to
the top classes.
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5. Do the following for each top class:

a) Create an EAnnotation containing the IRI of the cur-
rent class and add it to the instance of EClass.

b) Create an instance of EClass for each of the current
class’s subclasses and add them to the model. If an
instance of EClass for a subclass does already exist in
the Ecore metamodel, use this instance rather than
creating a new one.

¢) Add the current class to the eSuperTypes reference of
all of the EClass instances corresponding to its sub-
classes.

d) Repeat steps 5a to 5d for all of the current class’s
subclasses.

Property may be any resource which is of type rdfs:Prop-
erty, but not of any other type. Properties in RDF(S) may be
used to express relations between resources. The correspond-
ing modeling construct in Ecore are Structural Features,
namely EAttribute and EReference. While properties are
first-class citizens in the RDF(S) world, i.e., they can exist on
their own without being attached to a class, structural features
in Ecore are always contained by an EClass.

In order to transform a property, we may determine an
EClass as target, to which we can attach the structural feature
corresponding to the property in question. For properties
which are restricted to a certain domain, this EClass can be
derived from this restriction:

If the domain of the property is restricted to exactly one
class, the EClass corresponding to this class can be used
as the target.

If the domain of the property is composed of several
classes, we need to introduce a helper class which is a
superclass ofall domain classes (and only of these). This
helper class will then be the target for the structural
feature.

If no domain restriction exists for the property in question,
the domain of the property may be the set of all classes, which
in OWL is manifested by the class owl: Thing, the supertype
of'all classes. The EClass corresponding to owl:Class may be
used as target for properties without domain restriction. In
RDF(S) however, no class which is the superclass of all
classes exists. For the purpose of transforming properties
without this type of restriction (and other purposes, see
below), a helper class may be introduced into the Ecore model
similar to the Ecore expression of owl:Thing and should
hence be called rdfs2ecore: Thing. The structural feature is
consequently added to this EClass.

In contrast to OWL, RDF(S) does not distinguish between
object properties and data properties. This renders a direct
mapping to EReference and EAttribute impossible. While in
OWL object properties are used to link individuals to indi-
viduals and data properties are used to link individuals to data
values, properties in RDF(S) always link individuals to indi-
viduals, as all literal values (i.e., data values) are considered to
be instances of rdfs:Datatype (which is itself a subtype of
rdfs:Class) and hence individuals.

To be able to determine whether a property should be
transformed into an EReference or an EAttribute, the range
specification for the resp. property has to be taken into
account. If the range comprises only instances of rdfs:
Datatype, an EAttribute may be used. The datatype of the
EAttribute may be determined as follows:

If the range consists of exactly one datatype, the corre-
sponding Ecore datatype may be chosen. The details of
datatype mapping are discussed below.

If the range consists of several instances of multiple dis-
tinct datatypes, the datatype may be set to EString, and
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all values of the corresponding property may be trans-

formed as character strings without type interpretation.
In all other cases, an EReference may be used. The type of the
EReference may be determined as follows:

If the range is restricted to exactly one class, the EClass
corresponding to this class may be used as the eRefer-
enceType of the EReference.

Ifthe range of the property is composed of several classes,
a helper class which is a subclass of all range classes
(and only of these) may be introduced. This helper class
may then be used as the eReferenceType of the ERefer-
ence.

If no range restriction exists, the Ecore class Thing may
serve as the eReferenceType of the EReference.

A simplified algorithm for the transformation of properties

may be as follows:

1. Iterate over all properties and determine the necessary
helper classes:

For all properties which have multiple classes as
domain, a helper class which is a subclass of all
domain classes may be introduced into the ontology.

For all properties which have multiple classes as range,
a helper class which is a subclass of all range classes
may be introduced into the ontology.

Every domain and range consists of exactly one class
now (except for properties which have one or more
datatypes as range).

2. Transform the ontology’s class hierarchy.

3. Iterate over all properties:

Retrieve the EClass instance corresponding to the prop-
erties’ domain from the Ecore metamodel.

Create an EReference for all properties which have a
class as range and add it to the eStructuralFeatures
container of to the EClass instance corresponding to
the domain class. The type of this EReference may be
the EClass instance corresponding to the range class.

Create an EAttribute for all properties which have one or
more datatypes as range and add it to the eStructural-
Features container of to the EClass instance corre-
sponding to the domain class. If the range consists of
exactly one datatype, the type of this EAttribute may
be the Ecore counterpart of this datatype; in any other
case, the type may be EString.

Individual may be any resource which is of any other type
than rdfs:Property or rdfs:Class. A similar concept of
instances of classes (or individuals) exists in both worlds,
RDF(S) and Ecore. However, several differences emerge
when looking at the details.

As noted above, IRIs may be used in RDF(S) to identify
resources. Thus, with the exception of blank nodes, all indi-
viduals in RDF(S) may be associated to such an IRI. In Ecore,
instances are merely objects in the terms of object-oriented
programming and are exclusively identified by their memory
address. In contrast to classes, they have no corresponding
meta-modeling construct which could be subject to annota-
tions. In order to retain the information incorporated by the
IRI, special EAttributes may be added to every class, i.e., to
the common superclass rdfs2ecore:Thing which was intro-
duced above. The values for these attributes can be retrieved
analogously to the method for classes as described above.

RDF(S) allows multiple class membership for individuals,
even if these classes are not in a sub- or super-class relation-
ship. This is per se not possible in Ecore. An object in Ecore
can only be an instance of two or more classes: 1.) if these
classes are in a sub- or super-class relationship, or 2.) if the
object is at the same time an instance of a class which is, by
means of multiple inheritance, a subclass of all classes in
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question. In order to be able to transform individuals where
none of these conditions are met, the class hierarchy may be
enhanced by adding helper classes which fulfill the second
condition. The respective individuals can then be transformed
to instances of this helper class in Ecore.

A way to determine which helper classes are needed and at
which location in the class hierarchy they have to be inserted
may comprise an equivalence relation on the set of individu-
als being defined, and a subgraph of the inheritance graph (i.e.
the class hierarchy) for each resulting equivalence class being
constructed by determining the so-called membership
classes. The helper classes may then be defined as a subclass
of'the bottom classes of each subgraph. The bottom classes of
an inheritance graph may be the classes whose indegree in the
directed subgraph is 0, i.e., the classes which do not have
subclasses themselves.

This method can be applied to the transformation from
RDF(S) to Ecore as well. The following improvement may be
employed: If any helper class which was introduced as
described above has an outdegree of exactly 1 in the directed
subgraph (i.e., it has only one superclass), it can be omitted
and instances in the equivalence class associated to this helper
class can be transformed as instances of the corresponding
superclass. FIG. 9 illustrates an improved helper class gen-
eration 900, in accordance with an example embodiment.

In the transformation, the software engineer can decide for
every helper class ifhe prefers not to add it to the ontology, in
which case the affected individuals cannot be transformed to
Ecore.

A simplified algorithm for the transformation of individu-
als may be as follows:

1. Tterate over all individuals and insert the necessary

helper classes into the ontology.

. Transform the ontology’s class hierarchy.
. Transform the properties of the ontology.
. Create an empty Ecore model.

. Iterate over all individuals:

a) Retrieve the EClass instance corresponding to the
individual’s type from the Ecore metamodel.

b) Obtain an EObject instance for this individual by
instantiating the EClass instance retrieved in step 5a;
add it to the Ecore model (not the metamodel).

c) Iterate over all the properties in the ontology whose
subject is the current individual and retrieve the Ecore
counterpart of all objects of these properties either
from the Ecore model or as an instance of an Ecore
datatype. Set the value of the EStructuralFeature cor-
responding to the property accordingly; skip, if the
object is an individual whose counterpart is not yet in
model.

d) Iterate over all the properties in the ontology whose
object is the current individual and retrieve the Ecore
counterpart of all subjects of these properties from the
Ecore model. Set the value of the subject’s EStructur-
alFeature corresponding to the property accordingly.

A resource may be considered to be a complex resource if
itisused in the RDF(S) ontology as any combination of class,
property or instance. Conditions which may determine if a
resource falls into the respective category are specified below.

When transforming complex resources, as in the Ecore
world, entities can never be more than one of class, property
orinstance at the same time. Complex resource may therefore
be mapped to distinct representations of these concepts in
Ecore. The transformation may be able to provide a link
between these representations in order to preserve as much
information available in the ontology as possible.
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As shown above, the following representations may exist:

A class is represented by an instance of EClass.

A property is represented either by an EReference or by an

EAttribute.

An individual is represented by an instance of an instance

of EClass.

If a resource which is a combination of one of the above
types is about to be transformed, the software engineer can
choose to omit one or more of the representations. For
example, if a resource is used as a class and as an instance
throughout the ontology, the software engineer can choose to
only create a representation for the class aspect of the
resource.

If multiple representations are chosen, the software engi-
neer can decide that a kind of link should be established
between the representations. The characteristics of the link
may depend on the selected representations and are detailed
below.

Class and Individual may be any resource which is of type
rdfs:Class and at least of one other type except rdfs:Property
at the same time. A resource may be used as both a class and
an individual, as shown in FIG. 10, which illustrates an RDF
graph 1000 showing a resource being used as both a class and
an individual, in accordance with an example embodiment,
and as follows:

ex:Margherita rdf:type ex:Pizza.

ex:aMargherita rdf:type ex:Margherita.

Here, ex:Margherita is used as type of ex:aMargherita, and is
thus of type rdfs:Class. ex:Margherita is of type ex:Pizza, and
is therefore an individual.

Ifaresource is used as both, class and individual, either the
individual representation, the class representation or both can
be omitted. In the case of partial omission, the remaining
representation can be transformed according to the process
described above. If both representations are omitted, the
resource will not be transformed at all.

If both representations are retained, the resource may first
be transformed separately as a class (e.g., as class Margherita,
an instance of EClass) and subsequently as an instance of a
class (e.g., as an instance of class Pizza, which is itself an
instance of EClass). In order to maintain the information that
multiple representations for one and the same resource were
created, the following EAnnotation may be added to the class
representation:

Source = “http://www.sap.com/rdfs2ecore#individualRepresentation”
Key = “nameOfIndividual”

Value  =“Margherita”

Key = “namespacePrefixOfIndividual”

Value = “ex”

If OCL is enabled for the transformation of this entity, the
following entry may be added to the annotation:

Key =“OCL”

Value =rdfs2ecore::Thing.allInstances( )->select(t : rdfs2ecore::
Thing | t.nameOfIndividual = “Margherita” and t.
namespacePrefixOfIndividual = “ex”

The OCL query code above can be retrieved from the anno-
tation and subsequently executed by the software engineer. It
may return the actual object which represents the instance.
EMF may provide support for this in the generated model
editor for manual execution, as well as for programmatic
execution in the application using the generated model code.
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A simplified algorithm for the transformation of resources
in this category may be as follows:

1. Create EClass for the class representation.

2. Annotate EClass created in step 1 with the references to

the individual representation.

3. Obtain EClass corresponding to the type of the indi-

vidual representation.

4. Create instance of the EClass retrieved in step 3.

Class and Property may be any resource which is of type
rdfs:Class and of type rdfs:Property, but not of any other type
at the same time. A resource may be used as both a class and
a property, as shown in FIG. 11, which illustrates an RDF
graph 1100 showing a resource being used as both a class and
a property in accordance with an example embodiment, and
as follows:

ex:makesPizza rdf:type rdf:Property.

ex:makesPizza rdfs:domain ex:PizzaBaker.

ex:makesPizza rdfs:range ex:Pizza.

ex:margheritaRecipe rdfitype ex:makesPizza.

Here, ex:makesPizza is used as type of ex:margheritaRecipe,
and is thus of type rdfs:Class. ex:makesPizza is of type rdf:
Property, and is therefore a property.

Ifaresourceis used as both a class and a property, either the
property representation, the class representation, or both can
be omitted. In the case of partial omission, the remaining
representation can be transformed according to the process
described above. If both representations are omitted, the
resource will not be transformed at all.

If both representations are retained, the resource may first
be transformed separately as a class and as a property. The
class may consequently be represented by an EClass, the
property by an EStructuralFeature; the name of the resp.
EStructuralFeature, as well as the name of its container class
and the name of'the container class’s package, are stored as an
EAnnotation to the EClass of the class representation:

Key = “featureName”
Value = “makesPizza”
Key = “className”
Value = “PizzaBaker”
Key = “packageName”
Value = “ex”

In analogy, an EAnnotation may be added to the EStructur-
alFeature representing the property:

Source = “http://www.sap.com/rdfs2ecoretclassRepresentation”
Key = “className”

Value  =“makesPizza”

Key = “packageName”

Value = “ex”

A simplified algorithm for the transformation of resources

in this category may be as follows:

1. Create EClass for the class representation.

2. Annotate EClass created in step 1 with the references to
the property representation.

3. Create EStructuralFeature and add it to the EClass cor-
responding to the domain of the property representation.
Annotate EStructuralFeature created in step 3 with the

references to the class representation.

Property and Individual may be any resource which is of

type rdfs:Property and at least of one other type except rdfs:
Class at the same time. FI1G. 12 illustrates an RDF graph 1200
showing a resource being used as both a property and an
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individual in accordance with an example embodiment, and
as follows:

ex:makesPizza rdfitype ex:FoodPreparation
ex:makesPizza rdfitype rdf:Property
ex:makesPizza rdfs:domain ex:PizzaBaker
ex:makesPizza rdfs:range ex:Pizza

Here, ex:makesPizza is of type rdf:Property, and is therefore
aproperty. ex:makesPizza is of type ex:FoodPreparation, and
is therefore an individual.

If a resource is used as a property and as an instance of a
class, any of these representations can be omitted. If either
only the property representation or the individual representa-
tion is retained, the transformation can be performed accord-
ing to the process described above for properties, i.e., indi-
viduals.

If both the property representation and the individual rep-
resentation are retained, the resource may first be transformed
separately as a property and as an individual, which results in
an EStructuralFeature as a representation of the property and
an instance of a class (which itself is an instance of an
EClass). To establish the link between these representations,
an EAnnotation may be added to the EStructuralFeature:

Source = “http://www.sap.com/rdfs2ecore#individualRepresentation”
Key = “nameOfIndividual”

Value  =“makesPizza”

Key = “namespacePrefixOfIndividual”

Value = “ex”

If OCL is enabled for the transformation of this entity, the
following entry may be added to the annotation:

Key =“OCL”

Value =rdfs2ecore::Thing.alllnstances( )->select(t : rdfs2ecore::
Thing | t.nameOfIndividual = “makesPizza” and t.
namespacePrefixOfIndividual = “ex”

The above OCL query code can be retrieved and executed by
the software engineer in order to get the actual object which
represents the instance.

A simplified algorithm for the transformation of resources
in this category may be as follows:

1. Create EStructuralFeature and add it to the EClass cor-

responding to the domain of the property representation.

2. Annotate EStructuralFeature created in step 1 with the

references to the individual representation.

3. Obtain EClass corresponding to the type of the indi-

vidual representation.

4. Create instance of the EClass retrieved in step 3.

Class, Property and Individual may be any resource which
is of type rdfs:Class, of type rdfs:Property and at least of one
other type at the same time. FIG. 13 illustrates an RDF graph
1300 showing a resource being used as both a class, a prop-
erty, and an individual in accordance with an example
embodiment, and as follows:

ex:makesPizza rdfitype ex:FoodPreparation
ex:makesPizza rdfitype rdf:Property
ex:makesPizza rdfs:domain ex:PizzaBaker
ex:makesPizza rdfs:range ex:Pizza
ex:margheritaRecipe rdfitype ex:makesPizza
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Here, ex:makesPizza is used as type of ex:margheritaRecipe,
and is thus of type rdfs:Class. ex:makesPizza is of type rdf:
Property, and is therefore a property. ex:makesPizza is of type
ex:FoodPreparation, and is therefore an individual.

If a resource is used as all three, class, property and
instance, either one can be omitted. In the case of omission,
the remaining representation can be transformed according to
the process described above. If all three representations are
retained, the links between these representations can be estab-
lished pair wise as described in the paragraphs above.

A simplified algorithm for the transformation of resources
in this category may be as follows:

1. Create EClass for the class representation.

2. Annotate EClass created in step 1 with the references to

the property representation.

3. Annotate EClass created in step 1 with the references to

the individual representation.

4. Create EStructuralFeature and add it to the EClass cor-

responding to the domain of the property representation.

5. Annotate EStructuralFeature created in step 4 with the

references to the class representation.

6. Annotate EStructuralFeature created in step 4 with the

references to the individual representation.

7. Obtain EClass corresponding to the type of the indi-

vidual representation.

8. Create instance of the EClass retrieved in step 7.

In RDF(S) data values may be represented by the means of
literals. The value of such a literal may be described by a
sequence of characters. RDF(S) allows untyped and typed
literal values. The specification of a datatype for a literal can
be used when interpreting this value, e.g., as a number, a date
or a text string. A datatype may be specified by a URI, which
refers to a datatype definition. Datatypes can be defined with
the XML Schema Definition Language (XSD). It is up to the
application which processes an RDF(S) document to figure
out how to handle the given datatype. Hence, the W3C sug-
gest the use of the predefined XML Schema datatypes.

The only predefined RDF datatype is rdf: XML Literal. This
datatype is used to allow embedding XML content as literal
values into XML ontology documents without this content
being interpreted as being RDF(S).

In the transformation, the predefined XML Schema
datatypes can be mapped to corresponding built-in
EDataType. As untyped and typed literals are given as text
strings in an RDF(S) document, we can transform every
untyped literal and literals whose type is not one of the pre-
defined XML Schema datatypes to the Ecore datatype
EString.

Besides the basic modeling features discussed in the above
sections, RDF(S) provides primitives to model more complex
data structures, viz. containers, collections and nested propo-
sitions. The transformation details of these primitives are
introduced in this section.

RDF(S) features several modeling primitives to describe
groups of things and structures that resemble lists. These
primitives allow the construction of groups in two distinct
ways, either with containers and/or with collections.

A container in the RDF(S) context may be a group of
objects, which can always be extended with further elements
via the addition of RDF(S) triples. However, there is no way
to express that this group is closed and complete. A container
can thus be considered to be an open list.

The RDF equivalent of a closed list is a collection. Once a
container is initially defined, it is impossible to append further
elements just by adding new RDF(S) triples. This allows
expressing that a list contains all possible entries and is thus
complete.
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In both cases, the goal is to model a relation between one
subject to multiple objects. It should be noted that both con-
cepts are not introducing new expressivity to what can already
be expressed via individual RDF(S) triples, but rather are
“syntactic sugar” and allow for more concise serializations.
Consequently, all occurrences of these concepts can be
mapped to EAttributes and EReferences with cardinality 1..*
in the Ecore model as described above. However, these con-
structs provide a unified way to represent lists by the use of
standard classes and identifiers instead of specific, custom-
ized solutions using individual triples. While this fact doesn’t
have any semantic impact (i.e., an ordered list is an ordered
list, even if it is not expressed in a standard way), certain
additional information can be automatically extracted and
used for the transformation to Ecore.

The following types of containers may be provided by
RDF(S):

Bag (a resource of type rdf:Bag)

Sequence (rdf:Seq)

Alternative (rdf:Alt)

These predefined RDF types enable the ontologist to specify
his (informal) intention about how a group of resources or
literals should be interpreted in a given application, but they
have no influence on the RDF graph structure and carry no
formal semantics. The W3C proposes the following interpre-
tations:

A Bag represents a group of resources or literals without
any relevance of the order of its members. [t may contain
duplicate members.

A Sequence represents a group of resources or literals
which are arranged in an ordered sequence, and which
may contain duplicate members as well. A sequence can
thus be seen as an ordered list.

An Alternative represents a group of resources or literals
which are to be interpreted as equivalent alternatives.

As each of these cases differ in regards to the interpretation
of'the order of a group’s members, as well as the occurrence
of duplicate members, we can use these interpretations to
refine the EAttribute or EReference corresponding to the
one-to-many relation which are modeled by the container in
question. EAttribute and EReference are both subclasses of
EStructuralFeature, and as such have both the properties
ordered and unique. Ordered specifies whether the order of
values is significant, and unique specifies whether duplicate
elements are allowed.

For Bag, both ordered and unique are set to false, as the
order of the members is of no significance and it may contain
duplicate members. For Sequence, ordered is set to true, but
unique is set to false, as the order is of relevance, while
duplicate members may occur. For Alternative, ordered is set
to false, while unique is set to true. As all alternatives are
equivalent, order is of no relevance, and duplicates make no
sense in this context.

RDF collections are based on the principle of'a Linked List,
i.e., every non-empty list can be split into the first element and
the rest of the list. The rest of the list can either be split in this
way as well, or it is an empty list, i.e., the “end” of the list.
RDF provides the properties rdf:first and rdfirest, as well as a
predefined resource with the URI rdf:nil for the purpose of
constructing an RDF collection. As it is not possible to
append new elements at the end of the list by adding triples
without introducing inconsistencies, this type of list is con-
sidered to closed.

The closedness of a list is of importance in regards to the
Open World Assumption. As RDF(S) is based on this assump-
tion, it is necessary to be able to express that a collection
comprises all possible elements and that outside this collec-
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tion, no further possible elements exist. The distinction
between open and closed list is significant when reasoning
over RDF(S) ontologies. In Ecore, on the other hand, reason-
ing is of no relevance. Furthermore, a closed world is assumed
in the Ecore context, i.e., at any point in time, the list is
assumed to be closed. Thus, the only additional information
that we can exploit for the transformation is that for the
resulting EStructuralFeature, ordered has to be set to true, and
unique to false.

While RDF(S) does not allow to make statements about
other statements (i.e., the object of a triple is again a triple), it
provides the predefined properties rdf:subject, rdf:predicate,
rdfiobject and the predefined class rdfs:Statement as a
workaround for this limitation. The statements constructed by
this means are “propositions”, with no semantic impact, i.e.,
no assertion is done by such statements. By definition, the
referenced subjects, predicates and objects are resources in
the ontology. As these resources might very well be properties
(this is to be expected especially in the case of the predicate),
there is no way to transform these propositions by applying
the above described transformation process, as this would
require properties as first-class citizens. As a workaround we
propose the following solution: When such propositions
occur in an ontology, a class rdfs2ecore:Statement is created
in the Ecore model. This class contains the EAttributes sub-
ject, predicate and object of type EString with cardinality=1.
For every proposition, an instance of this class may be cre-
ated, and the values of the EAttributes may be set to the
according IRI. This mechanism is optional; the software engi-
neer can choose to ignore these propositions.

Additionally, in our transformation, the software engineer
can decide to convert a proposition to an assertion, i.e., adding
the predicate as an EStructuralFeature to the class represen-
tation of the subject and setting the value according to the
object.

RDF(S) provides a set of predefined property names, by
means of which additional information can be attached to
resources in an RDF(S) document. This additional informa-
tion has no semantic impact, but is supposed to provide fur-
ther information in a human-readable way.

rdfs:label may be used to attach a label to a resource, which
can then be used, e.g., to be displayed instead of the
resource’s less readable URI when visualizing the RDF docu-
ment as a graph; rdfs:comment allows to assign human-read-
able comments to resources; rdfs:seeAlso and rdfs:isDe-
finedBy can be used to link one resource to other resources
that might provide further information about the subject
resource.

The range of rdfs:label and rdfs:comment is rdfs:Literal;
the range of rdfs:seeAlso and rdfs:isDefinedBy is rdfs:Re-
source; as rdfs:Resource can be represented by an URI, all
four values can be putinto character strings on the Ecore side.

The additional information attached to an rdfs:Resource
may therefore be transformed as follows:

To the class and property representations (which are oftype
EClass and EStructuralFeature) of a resource (if such a
representations are required) we may add the EAnnota-
tion:

Source = “http://www.sap.com/sw2ecore#ontologyAnnotations”
Key = “label_<i>”// withiel.n

Value ... // the value of the i-th rdfs:label property for
this resource

Key = “comment_<i>"//withie l.n

Value  =...// the value of the i-th rdfs:comment property

for this resource
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-continued
Key = “seeAlso”
Value  =...//the values of the rdfs:seeAlso property for
this resource as URIs, separated by spaces
Key = “isDefinedBy”
Value  =...//the values of the rdfs:isDefinedBy property

for this resource as URIs, separated by spaces

As rdfs:isDefinedBy is meant to be a subproperty of rdfs:
seeAlso, the values of rdfs:see Also may contain all the values
of rdfs:isDefinedBy.

The representation of instances in Ecore is not part of the
modeling concepts; they are merely instances of
instances of an EClass in Ecore. As such, there is no
predefined way to attach annotations to them like the
above mentioned EAnnotations for class and property
representations. To circumvent this restriction, we may
add an unbounded EAttribute “additionalInformation”
of type EStringToStringMapEntry to the common
superclass Thing. We can then add the following key-
value-pairs to this EAttribute (analogously to the EAn-
notation specified above):

Key = “label_<i>”// withiel.n

Value  =...// the value of the i-th rdfs:label property for
this resource

Key = “comment_<i>"//withiel.n

Value  =...// the value of the i-th rdfs:comment property
for this resource

Key = “seeAlso”

Value  =...// the values of the rdfs:seeAlso property for
this resource as URIs, separated by spaces

Key = “isDefinedBy”

Value  =...// the values of the rdfs:isDefined By property

for this resource as URIs, separated by spaces

The present disclosure is also relevant to the transforma-
tion of OWL modeling primitives to Ecore. One aim of the
transformation from OWL to Ecore is to be as adjustable as
possible without burdening the software engineer with the
need to delve into the details of OWL, description logic and
reasoning. Another goal is to make the transformation process
easily repeatable, so changes to the original model, i.e., the
ontology, do not entail a lot of manual adjustments on behalf
of the software engineer. Hence, we propose to extend the
original transformation from OWL to Ecore with the possi-
bility to exclude specific classes from the transformation as
specified by the software engineer.

As stated above for the transformation from RDF(S), the
class hierarchy of an ontology might contain classes which
are of no interest for the model in the Ecore world. In order to
enable the engineer to repeatedly apply the transformation
without having to erase the respective classes each time by
hand, with this extension, he can specify for each class if he
wants to retain it for the transformation or not. Ifhe decides to
omit a class, all its subclasses will not be transformed either.
This applies as well for individuals which are members of one
ormore of the omitted classes, and for properties whose range
or domain class is omitted.

OWL allows multiple class membership for individuals,
even if these classes are not in a sub- or super-class relation-
ship. As stated above for the transformation from RDF(S) to
Ecore, this behavior is not supported in Ecore, and renders the
introduction of helper classes necessary.

An equivalence relation on the set of individuals is defined,
and a subgraph of the inheritance graph (i.e., the class hier-
archy) for each resulting equivalence class is constructed.
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This is used to determine the number and the location of the
necessary helper classes, which are simply defined as a sub-
class of the bottom classes of each subgraph, with the term
“bottom classes of a graph” referring to classes which do not
have subclasses themselves.

We propose to apply the improvement introduced for the
transformation from RDF(S) to Ecore as well to the transfor-
mation from OWL to Ecore. The improvement consists of
exploiting the fact that when an inheritance subgraph of an
equivalence class has only one bottom class, the individuals
in question can be transformed directly to instances of this
bottom class, omitting no additional helper class.

‘When modeling relations between classes, e.g., individuals
in OWL via object or data properties, it is possible that the
modeler does not specify the domain and/or the range of such
a property. This may be intentional or due to negligence. In
OWL, the domain and range for such properties is implicitly
assumed to be owl: Thing. The OWL to Ecore (OWL2Ecore)
transformation may therefore add the associated EReference
to the EClass corresponding to owl: Thing, which, while for-
mally correct, might not be the desired behavior even in the
case of intentional omission.

To circumvent this behavior, we propose an extension of
the OWL2Ecore transformation. In case that domain and/or
range of a property is owl:Thing, the transformation can
either be continued “as is” without modification, or the
classes for range and domain can be specified. If the ABox is
part of the transformation, the types of the individuals asso-
ciated with the property in question can be taken into account
to determine the type of domain and range:

domain and range can be set to the “lowest” common
supertype of the above types. If this is owl: Thing, noth-
ing is done.

One of the common supertypes can be used. Again, if the
only available supertype is owl: Thing, no change is per-
formed.

Alternatively, helper classes can be created. A helper class
can be generated as supertype of all concerned types. A
helper class can be generated as supertype of a subset of
the concerned types.

Ifthe ABox is not part of the transformation, the classes for
domain and range can be chosen freely. In addition, it is
possible to specify more than one domain and range pair; the
property will then be transformed as multiple EStructuralFea-
tures (one for every pair).

However, this extension introduces several transformation
problems due to which the possibility to specify or deduce
domain and range should be used with caution:

OCL may be used to preserve information on class mem-
bership induced by so-called class descriptions. By
bending containing classes and types of EStructuralFea-
tures as described above, domain and range given in
these class description no longer match the Ecore model
and may render the generated OCL constructs invalid. In
this case, the information obtained from the class
descriptions will be lost, and the corresponding OCL
expressions will be discarded.

The integrity of the property hierarchy can no longer be
guaranteed. Again, this information will not be pre-
served in this case.

If the above extension is used on pairwise-disjoint proper-
ties, it is possible that the disjointedness cannot be main-
tained in the Ecore model.

The same problem arises for properties which have an
opposite property. This quality may not be preserved, if
domain and range are not adjusted accordingly for both
properties.
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Same individuals (i.e., individuals whose equivalence can
be inferred or is explicitly asserted) may be transformed as
distinct instances of their associated types. The “sameness” of
these instances was provided by a reference to all equivalent
instances. While this is a perfectly valid way to preserve the
information from the ontology, the resulting Ecore model
would be inefficient and difficult to handle:

Same individuals in an ontology share all qualities by
definition. Any modification of one individual affects
every other individual which is declared equivalent. In
Ecore, objects are different by default. For instance, they
are allocated to different memory addresses. Any change
to one object would not be reected in any other object.
Ecore itself does not provide any facilities to handle
“same” objects. The same holds true for OCL.

The only additional information provided by same indi-
viduals lies in their IRI. This information is a concept
which is already foreign to the Ecore world. Creating
distinct objects has no reasonable advantage when this
information could be preserved in a much simpler and
efficient way.

We propose the following solution:

For a group of same individuals, only one representative is
transformed, similar to the transformation of classes and
properties.

A multi-valued EAttribute of type EString is attached to the
common top-level class Thing. For each same indi-
vidual, the IRI of this individual is added as a value of
this EAttribute.

Ecore offers functionality to validate models. In addition to
the improvements of the constraints themselves, we propose
to use the convention for validation delegates when embed-
ding OCL constraints in Ecore classes. The constraints will
then be treated as invariants for the annotated class. These
invariants are verified each time model validation is per-
formed.

In OWL (as well as in RDF(S)), properties are first-order
citizens that form a hierarchy of binary relations. If an object
property ex:hasUncle is a direct subproperty of an object
property ex:hasRelative, every pair of individuals related by
the object property ex:hasUncle is implicitly related by the
object property ex:hasRelative due to the fact that ex:ha-
sUncle is a subproperty of ex:hasRelative. By annotating the
Ecore class Person (in package ex) corresponding to the
domain of the property ex:hasUncle with the following OCL
constraint, it is possible to verify if the above conditions
regarding the property hierarchy are met by the current state
of the Ecore model when validating the model.

ex : : Person . allInstances ( )->forAll (a | a . hasRelative->
includesAll (a. hasUncle ) )

This applies to datatype properties as well. Given a datatype
property pair ex:spouseName and ex:partnerName where
ex:spouseName is direct subproperty of ex:partnerName,
every literal connected to an individual by ex:spouseName is
implicitly also connected to the same individual by ex:part-
nerName. This can be expressed by the following OCL con-
straint.

ex : : Person . allInstances ( )->forAll (a | a. partnerName->
includesAll ( a . spouseName ) )

In OWL, it is possible to make statements about the set of
members of a class in several ways, viz. by enumeration of



does not automatically become subclass of D. In the follow-
ing OCL examples, these cases are noted.
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every member of the class in question, by restricting mem-
bership to individuals fulfilling certain conditions regarding
one or more given properties or by applying set operations on
the set of members of existing classes. Again, we can use
OCL invariants to preserve the information induced by these >
so-called class descriptions.

The following assumption is true for most property restric-

tions:

Let us assume the property P with the domain class D to be
restricted on the class A. Thus, A automatically becomes
subclass of D through inference of the reasoner. After the
transformation to an Ecore model, class A would already
own an EReference P through inheritance from class D.
In conclusion, it is necessary and sufficient to use OCL
invariants attached to class A in the Ecore world to
handle local restrictions.

10

15

However, there are cases of property restrictions, where A
20

AllValuesFrom with A=Person and P=hasPet:
ObjectAllValuesFrom( a:hasPet a:Dog )

Person . allInstances ( )->forAll (a | i fa . oclIsKindOf (PetOwner)
then ( a. oclAsType (PetOwner ) . hasPet->asSe t ( )->

forAll (b | b . oclIsKindOf (Dog) ) ) else true endif )

25

In the case of AllValuesFrom, A is not classified as subclass 30

of D by the reasoner, because A requires members to have
either a dog or no pet at all. Individuals who have no pet at all
are not necessarily members of D, so in the Ecore model, their
corresponding classes would not own an EReference P.
Because of this, members of A have to be have to be checked
for their membership in D and cast to D when the check turns
out positive. In OCL, this is achieved via the predefined
functions ocllsKindOf and oclAsType.

35
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SomeValuesFrom with A=Person and P=fatherOf :
ObjectSomeValuesFrom( a:fatherOf a:Man )

Person . alllnstances ( )->forAll (a | a. fatherOf->asSe t ( )->
exists (b | b. oclIsKindOf (Man) ) )

HasValue with A=AlexandersChildren and P=hasFather :
ObjectHasValue(a:hasFather Alexander)

AlexandersChildren . alllnstances ( )->

collect ( x | x . hasFather )->

exists ( X | x . nameOfIndividual ="' Alexander ')

HasSelf with A=AutoRegulatingProcess and P=regulate:
SubClassOf(: AutoRegulatingProcess ObjectHasSelf(a:regulate))
AutoRegulatingProcess . allInstances ( )-> 0
forAll (x | x . regulate->asSet ( )->includes (x) )

45

bers with no parent at all, so the corresponding classes in the
Ecore model might not own the EReference corresponding to

Similar to AllValuesFrom, MaxCardinality allows mem-

MaxCardinality with A=Person, P=hasParent and
D=PersonWithRelatives:

ObjectMaxCardinality( 2 azhasParent )

Person . alllnstances ( )->forAll (a |

if a. oclIsKindOf ( PersonWithRelatives )

then a . oclAsType ( PersonWithRelatives ) . hasParent->
asSet ( )->size ()<=2

else true endif )
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This is not the case for the MinCardinality restriction.

MinCardinality with A=Person, P=hasNationality and D=Citizen:
ObjectMinCardinality(1 a: hasNationality)

people : : Person . alllnstances ( )->forAll (a | a. hasNationality->
asSet ( )->size ( )>=1)

An OWL class can be described by the means of union,
intersection or complement of the set of members of other
OWL classes.

UnionOf (in conjunction with AllValuesFrom) with A=Person,
P=hasRelative and D=PersonWithRelatives:

ObjectAllValuesFrom( a:hasRelative ObjectUnionOf{ a:Woman a:Man))
Person . alllnstances ( )->forAll (a |

if a. oclIsKindOf ( PersonWithRelatives )

then (a . oclAsType ( PersonWithRelatives ) . hasRelative->asSet ( )->
forAll (b I b . oclIsKindOf (Woman) or b . oclIsKindOf (Man) )

else true endif )

IntersectionOf and ComplementOf (in conjunction with AllValuesFrom)
with A=Person, P=hasYoungSister and D=PersonWithRelatives:
ObjectAllValuesFrom( a:hasYoungSister

ObjectIntersectionOf( a: Woman ObjectComplementOf( a:AdultWoman))
Person . alllnstances ( )->forAll (a |

if a. oclIsKindOf ( PersonWithRelatives )

then (a . oclAsType ( PersonWithRelatives ) . hasYoungSister->

asSet ()->forAll (b | b . oclIsKindOf (Woman)

and not b . ocllsKindOf (AdultWoman) )

else true endif )

An OWL class can be described by explicitly specifying
every member of the class.

OneOf with A=Wine and P=hasColour:
ObjectAllValuesFrom(a:hasColourObjectOneOf(a:White a:Red))
Wine . allInstances ( )->collect ( x | x . hasColour )->forAll (y |
y . nameOflndividual=' white ' or y . nameOfIndividual="red ')

Several “qualities” can be assigned to properties in OWL.
The semantics of these so-called property characteristics can
again be preserved in Ecore by using OCL invariants.

Functional and Inverse Functional Properties
If an object property P is functional, for each individual x,
there can be at most one distinct individual y such that x is
connected by P to y; if an object property P is inverse-func-
tional, for each individual x, there can be at most one indi-
vidual y such that y is connected by P with x.

Functional Property with P=hasParent, D=PersonWithRelatives
FunctionalObjectProperty(a:hasFather)

PersonWithRelatives . allInstances ( )->

forAll (a | a. hasFather->asSet ( )->size ( )<=1)
InverseFunctionalProperty with P=fatherOf, D=PersonWithRelatives
InverseFunctionalObjectProperty(a:fatherOf)

PersonWithRelatives . allInstances ( )->forAll (x ,y |

x . fatherOf->excludesAll (y . fatherOf->asSet () ) )

Symmetric and Asymmetric Object Properties
If an object property P is symmetric, for every pair of indi-
viduals x and y, if X is connected to y by P, y is also connected
to x by P; if an object property P is asymmetric, for every pair
of'individuals x and y, if x is connected to y by P, y cannot be
connected to x by P.

Symmetric Property with P=hasFriend, D=PersonWithFriends
SymmetricObjectProperty(a:hasFriend)

PersonWithFriends . allInstances ( )->

forAll (x , y | x . hasFriend->includes ( y )

implies y . hasFriend->includes (x ) )
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-continued

Asymmetric Property with P=fatherOf, D=Person
AsymmetricObjectProperty(a:fatherOf)

Person . allInstances ( )->forAll (x,y | x. fatherOf->includes (y )
implies y . fatherOf->exclude s (x ) )

Transitive Object Properties
If an object property P is transitive, for every triple of indi-
viduals X, y and z, if x is connected to y by P, and y is
connected to z by P, then x is also connected to z by P.

Transitive Property with P=ancestorOf, D=PersonWithDescendants,
R=Person

TransitiveObjectProperty(a:ancestorOf)

PersonWithDescendants . alllnstances ( )->

forAll ( x | PersonWithDescendants . allInstances ( )->

forAll (y | Person . alllnstances ( )->

forAll ( z | x . ancestorOf->includes (y )

and y . ancestorOf->includes ( z )

implies x . ancestorOf->includes (z))))

Reflexive and Irreflexive Object Properties

OWL Assertion: ReexiveObjectProperty(a:anyProperty)

A. allInstances ( )->forAll ( x | x . anyProperty->includes (x ) )
OWL Assertion: IrreexiveObjectProperty(a:anyProperty)

A. allInstances ( )->forAll ( x | x . anyProperty->excludes (x ) )

Disjoint Properties

15

20

If two properties P, and P, are declared to be disjoint, an >0

individual x cannot be connected to a distinct individual y by
both properties P, and P, at the same time.

Disjoint Properties with P =hasFather, P,=hasMother,
D,=Person, D,=Person

DisjointObjectProperties( a:hasFather azhasMother )
Person . alllnstances ()->forAll (a | a. hasFather->
excludesAll (a . hasMother->asSet () ) )

Several further axioms regarding properties exist in OWL
that can be expressed in Ecore via OCL invariants. In the
following paragraphs, comprehensive examples for these
invariants are given.

Property Chains
Properties can be defined as a composition of other properties
by means of so-called property chains. By defining an object
property P as the chain of object properties P, (i€l . . . n), we
state that any individual x connected with an individual y by
this chain of object properties is necessary connected with 'y
by the object property P. FIG. 14 illustrates the definition of
property P by means of a property chain, in accordance with
an example embodiment.

Property Chain with property P, domain A of P, properties P, in chain (i €
1..n),

domain A; of P, range Ri of Pi

ObjectPropertyChain( P1 ... Pn)

A. alllnstances ( )->forAll (al | D1 . alllnstances ( )->

forAll (a2 | D2 . alllnstances ( )->forAll (...

Dn . allInstances ( )->forAll (an | Rn . alllnstances ( )->

forAll (an+1 | al .P1->includes ( a2 )

and a2 .P2->includes (a3 ) and .. . an .Pn->includes ( an+1)

implies al .P->includes (an+1))...))

Keys
Keys allow to specify that named instances of a class are
uniquely identified by the value of one or more given prop-
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erties, i.e., if the instances have the same value for each key
property, then these instances must be identical.

HasKey with A=Person, P=hasSSN

HasKey( a:Person a:hasSSN )

Person . alllnstances ( )->forAll (x,y | x . hasSSN->
excludesAll (y . hasSSN->asSet () ) )

Negative Property Assertion

A negative property assertion states that a specific individual
is not connected to another specific individual or a specific
literal by the given property. This is important in regards to the
open world assumption of OWL,, as otherwise the question if
an individual is connected to another individual or literal by
the property in question could not be answered with “no”
even if no positive property assertion exists.

Negative Property Assertion with A=Man, P=hasWife
NegativeObjectProperty Assertion( achasWife a:Bill a:Mary )
Man. allInstances ( )->

forAll ( x | x . NameOfIndividual="Bi Il"

implies x . hasWife->asSet ( )->

forAll (y |y . NameOfIndividual<>'Mary ') )

When modeling an ontology, individuals are often not
declared differentFrom, sometimes even if the ontologist
thinks of them as different, but does not explicitly assert the
difference of these individuals. This may be due to negli-
gence, but as the explicit assertion for every pair of individu-
als is a tedious task, it may just not be feasible for ontologies
with a large amount of individuals. When transforming these
individuals, they automatically become “different” objects in
Ecore, but this may still prove to be a problem, as the infor-
mation about the difference is not taken into consideration
when performing reasoning on an ontology, i.e., when mate-
rializing implicit knowledge before the actual transforma-
tion. As a workaround, we propose the possibility to set all
individuals as pair-wise different before the materialization
of implicit knowledge, except those individuals which are
asserted as equivalents of other individuals.

The implementation of the transformation of a Semantic
Web ontology into a software meta-model and model is dis-
cussed below. The ontology transformation module 620 may
be implemented as a plug-in for the Eclipse Platform. The
Eclipse platform forms the base of Ecore. FIG. 15 illustrates
a simplified plug-in dependency diagram 1500 of the imple-
mentation, in accordance with an example embodiment.

The first implementation step may be the definition of a
data model for the configuration options of our transforma-
tion. To allow an adjustable transformation, the model may be
able to represent all possible configuration needs, all the
while not encapsulating application logic and thus losing
flexibility. The capability to save transformation decisions
and to reapply these decisions on subsequent transformations
may be achieved.

The data model may be created in Ecore by specifying the
model using an XML Schema definition. This may be done
for three reasons:

1. In order to use of EMF’s persistence facilities with a

serialization format tailored to our needs.

2. Due to the code generation facilities provided by EMF, a
basic editor may be generated for our configuration files,
allowing for instant creation and modification of trans-
formation configurations.
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3. Modifications and extensions of the configuration model
are inexpensive due to automated code regeneration and
merging.

A wizard-driven graphical user-interface may be employed in
order to allow configuration of the most common use-cases.
For a more specific configuration, the auto-generated config
file editor can be used.

FIG. 16 illustrates a package dependency diagram 1600 of
the implementation, in accordance with an example embodi-
ment. The implementation may be divided into several pack-
ages. Each of these packages may concentrate one specific
aspect of the whole transformation process. The functionality
provided by each of these packages is outlined below.

FIG. 17 illustrates a package structure 1700 of an imple-
mentation, in accordance with an example embodiment. In
the base package, notable classes are OWL2EcoreMain and
OWL2EcoreTransformation. OWL2EcoreMain provides a
Java main method as well as the API to invoke the whole
transformation from other applications (or plug-ins like the
wizard-driven user interface described below). It may invoke
ontology  preparation, as well as the class
OWL2EcoreTransformation. This class may provide the
frame for the actual transformation.

FIG. 18 illustrates the composition of a config package
1800, in accordance with an example embodiment. The con-
fig package 1800 may contain the data model of the transfor-
mation. This model may be used to handle the configuration
and the corresponding configuration files. The model may be
an Ecore model and be specified via an XML Schema file. In
consequence, this package may contain mainly auto-gener-
ated classes, except some classes in the util package and some
manual modifications to the Config interface and its imple-
mentation.

FIG. 19 illustrates the composition of an owl package
1900, in accordance with an example embodiment. The owl
package 1900 may contain all functionality related to the
preparation of the ontology for a subsequent transformation.
In this package, the necessary helper classes for anonymous
classes, domains and ranges of properties and for individuals
may be identified and added to a copy of the ontology (if not
configured otherwise). Also, implicit knowledge, i.e., knowl-
edge which is only implicitly manifested in the ontology and
accessible via reasoning, may be materialized by adding
explicit statements to the copied ontology.

Notable classes are OWLOntologyExtension, which is the
package’s main class and integrates the functionality of the
other classes of this package to provide the behavior
described above, and
OWLOuterAnonymousClass WalkerVisitor, which allows to
identify “maximal” anonymous classes, i.e., classes which
are not part of another, nested anonymous class.

FIG. 20 illustrates the composition of an ecore package
2000, in accordance with an example embodiment. The ecore
package 2000 contains all the functionality related to the
actual transformation. A rough outline of the transformation
process may be as follows:

1. The class hierarchy is traversed and the corresponding
classes are created in an FEcore (meta-)model via
OWLEcoreClassHierarchy Transformator.

2. The object and data property hierarchies are traversed
and the necessary attributes and references are created in
corresponding classes by the classes OWLEcoreObject-
PropertiesTransformator and OWLEcoreDataProperti-
esTransformator. The Ecore metamodel is complete.

3. An iteration over the set of individuals is performed with
the class OWLEcorelndividual Transformator, the corre-
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sponding Ecore classes are instantiated and the refer-
ences and attributes set to the correct values.

Another notable class is OCLGenerator, which uses nested
anonymous class expressions as an abstract syntax tree for
OCL constraint generation.

A wizard-driven graphical user interface may be provided
for the transformation from OWL to Ecore as a separate
Eclipse plug-in. Impressions of the user interface and expla-
nations of the user interface controls are discussed below.

Ifthe plug-in is installed correctly, a new item OWL2Ecore
may be available in the main menu of the Eclipse IDE. The
plug-in can be started by selecting this menu item and after-
wards selecting Launch.

The first dialog which may be displayed to the user is an
ontology selection dialog. FIG. 21 illustrates a graphical user
interface 2100 for specifying an OWL ontology, in accor-
dance with an example embodiment. An OWL Ontology File
setting may allow the user to specify a local file which con-
tains the ontology. Ontologies that compose the import clo-
sure of the selected ontology may be available either remotely
under their IRI or locally in the same directory. An OWL
Ontology IRI setting may allow the user to specify an IRI
under which the ontology can be retrieved remotely. If the
specified ontology is already a fully extended ontology, e.g.,
when using intermediate ontology files from previous trans-
formations, an OWL Ontology File from Previous Transfor-
mation setting can be used to save time. In some embodi-
ments, no ontology preparation and extension (i.e., no
ontology classification and no materialization of implicit
knowledge) is performed in this case; instead, the transfor-
mation is performed immediately.

After having chosen the ontology which is to be trans-
formed, either a new configuration file may be created or an
existing one selected. FIG. 22 illustrates a graphical user
interface 2200 for specifying a configuration file, in accor-
dance with an example embodiment. A Config file setting
may allow the user to specify a configuration file. If the
current ontology is transformed for the first time and no
configuration file exists, a new one may be created at the given
location. If no location or an invalid one is specified, the
configuration may not be saved. If a Do not Overwrite Config
File setting is selected, an existing config file can be specified,
but any subsequent changes of the configuration in the fol-
lowing dialogs will not be written to this file. This may be
used for testing purposes without risking to lose a previously
“well-tended” configuration.

FIG. 23 illustrates a graphical user interface 2300 for speci-
fying general transformation settings, in accordance with an
example embodiment. In this dialog, the settings which are
relevant for the transformation as a whole rather than for
distinct entities can be specified. Import Depth may specify to
which point the OWL entities of the import closure are carried
over to the Ecore model. An explanation of the possible
values can be found below. Namespace Transformation may
specify in which way namespaces are transformed. An expla-
nation of the possible values can be found below. Helper
Classes Location may specify in which package helper
classes are placed. Helper classes are classes, which are not
explicitly present in the original ontology, but are necessary in
the Ecore model to transform certain concepts, e.g., individu-
als which belong to multiple distinct branches in the class
hierarchy. An explanation of the possible values can be found
below. A Create Document Root in Ecore Model setting may
enable the generation of a model root element which owns
containment references to all transformed classes, so
instances can easily be created and used via the generated
EMF editors. A Use Document Root for Instance Transfor-
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mation setting may specity if the transformed individuals are
attached to the above root element, so they can be easily
viewed and modified via the generated EMF editors.

FIG. 24 illustrates a graphical user interface 2400 for speci-
fying default settings for distinct entities, in accordance with
an example embodiment. This dialog may allow users to
specify the default settings for the ontology’s entities. As long
as all entities still use the default settings, any modification on
this dialog affects all entities. As soon as individual settings
are applied (e.g., by modification of the configuration file via
the auto-generated editor), any modification on this dialog
may affect only entities for which no configuration values
from a previous transformation were found. In this case, an
additional checkbox may be displayed which allows to over-
ride this behavior, so the settings of this dialog can be applied
to all entities (while risking to lose manual modifications to
the configuration file).

In some embodiments, if the slider is set to an Only TBox,
no Helper Classes, no OCL for Classes position, no helper
classes will be created and no OCL constraints will be gen-
erated from OWL class descriptions. In some embodiments,
if the slider is set to a TBox+Helper Classes, but no OCL for
Classes position, helper classes will be created, but no OCL
constraints will be generated from OWL class descriptions. In
some embodiments, if the slider is set to a TBox+Helper
Classes+OCL for Classes position, helper classes will be
created and OCL constraints will be generated from OWL
class descriptions. With a Transform also Individuals (ABox)
setting, it may be possible to transform the individuals of the
ontology to instances in Ecore. A Generate OCL Constraints
for Properties setting may enable the generation of all prop-
erty related OCL constraints. A list of the different constraint
types can be found below. Regarding a Reduce Cardinality for
DataProperties from 0..* to 0..1 setting, if no explicit cardi-
nality restrictions are given for a property, it may be assumed
to be 0..* in OWL. By enabling this setting, 0::1 may be used
instead. Regarding an Infer Range and Domain of Object
Properties from ABox When Missing setting, if no domain
and/or range was specified for an object property, domain and
range may be assumed to be Thing. By enabling this setting,
the domain and range may be set to the lowest common
supertype (lowest in the sense of the class hierarchy) of all
corresponding individuals.

OCL constraints for anonymous class expressions may
have to be dropped because the corresponding reference in
Thing is not available any more. OCL constraints for disjoint-
edness of properties may have to be dropped as well due to
incompatible lowest common supertypes. In this case, dis-
jointedness may be naturally provided by the incompatibility
of these types.

FIG. 25 illustrates a graphical user interface 2500 for speci-
fying an output directory, in accordance with an example
embodiment. In this dialog, the output directory can be speci-
fied. The results of the transformation may be written to this
directory. Two files may be written to the specified directory.
One file may hold the Ecore metamodel containing the result
of' the transformation of the TBox; the other file may hold the
Ecore model (i.e., an instance of the Ecore metamodel) con-
taining the result of the transformation of the ABox. In some
embodiments, the second file will not be generated if the
ABox is not transformed.

FIG. 26 illustrates a graphical user interface 2600 for speci-
fying areasoned for the transformation, in accordance with an
example embodiment. In this dialog, the reasoner for the
transformation can be selected or specified. By default, sev-
eral currently existing reasoner solutions may be looked up on
the class path and provided for selection when found. It is also
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possible to provide further reasoner solutions. To do so, the
corresponding libraries may be put into an Eclipse fragment
plug-in and exposed in the runtime classpath of the fragment
plug-in. The ID of the host plug-in may be
com.sap.owl2ecore.core. If the fully qualified name of a class
implementing the OWLReasonerFactory interface of the
OWL API 3 is supplied, and this implementation is found in
the classpath, this reasoner may be used for the transforma-
tion. By default, the plug-in may look for several currently
existing reasoner solutions and provide the ones which were
found in the drop-down list of this control.

Configuration options which can be specified in the con-
figuration file are discussed below. The configuration file may
be ahierarchically structured XML file. For better readability
a “flat” representation may be chosen. The configuration file
can be edited with standard text or XML editors, but an
auto-generated EMF editor may also integrated in the plug-in.

One type of configuration option may be general options,
which may designate all settings which are relevant for the
transformation as a whole rather than for distinct entities.
Examples of general options include the following:

importDepth

Specifies to which point the OWL entities of the import

closure are carried over to the Ecore model.

Possible values:

none Only entities which are referenced in the base ontol-

ogy are considered.

direct Additionally to the entities from setting “none”, all

entities referenced in the ontologies specified in the
import closure are transformed.

full Every single entity of the whole import closure is

carried over.

namespaceTransformation

Specifies in which way namespaces are transformed.

Possible values:

flat_packages

For every namespace, an Ecore package will be created
on the top level of the package structure, so no pack-
age hierarchy will be established.

nested_packages

This setting takes the path-component of the
namespace’s IRI into consideration, so if the IRI of
namespace A points to a sub-path of namespace B, the
EPackage created for A will be a subpackage of the
EPackage for B. Example: namespace util with IRI
http://www.sap.com/owl2ecore/util# and namespace
helper with IR http://www.sap.com/owl2ecore/util/
helper# will lead to EPackages util and util.helper.

class_name_suffix

With this setting, the creation of EPackages is omitted.
Instead, the namespace prefix is appended to the name
of the EClass in the Ecore model, separated by an
underscore “_”, e.g., Thing owl.

class_name_suffix_on_conflict

Justlike for “class name suffix” (see above), the creation
of EPackages is omitted. But the namespace prefix is
appended to the name of the EClass in the Ecore
model only if another class with the same name exists.

locationOfHelperClasses

Specifies in which package helper classes are placed.

Helper classes are classes, which are not explicitly

present in the original ontology, but are necessary in the

Ecore model to transform certain concepts, e.g., indi-

viduals which belong to multiple distinct branches in the
class hierarchy.
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Possible values:
main_package The helper classes are placed in the
ontology’s principal Ecore package along with the
other classes.
separate_package An EPackage is created specially for
the helper classes. In this case, a namespace can be
provided which will be used for the package creation
(see below).
helperClassesPackageNamespace
Specifies to which point the OWL entities of the import
closure are carried over to the Ecore model.
Possible values:
A namespace definition
documentRoot
Allows for the generation of a model root element which
owns containment references to all transformed classes
and (optionally) individuals, so instances can easily be
created and used via the generated EMF editors.
Subvalues:
package The location of the document root in the Ecore
model.
Possible values:
A namespace definition
name The name of the document root in the Ecore model.
Possible values:
Any character string
useForTBox Specifies if the document root is generated at
all.
Possible values:
boolean
useForABox Determines if the document root (if generated
via useForTBox=true) is used for the transformation of
the existing individuals.
Possible values:
boolean
setDifferentFromForIndividuals
Specifies if “DifferentIndividuals™-axioms are to be gen-
erated for every pair of individuals which are not defined
to be “Samelndividuals™ or already “DifferentIndividu-
als”. This can be used to bring the unique name assump-
tion of the Ecore world to OWL. Unfortunately, some
reasoners (Pellet as of version 2.2.2, HermiT as of ver-
sion 1.3.0) do not handle this very well.
Possible values:
boolean
Another type of configuration option may be classes,
which may have associated XML elements: namedClass,
anonymousClass. It is possible to specify distinct transforma-
tion options for every single class. Configuration wise,
classes are separated into named classes (any class explicitly
defined and identified by an IRI) and anonymous classes
(implicit classes which were materialized when preparing the
transformation; these classes are identified by an auto-gener-
ated IRI based on hash values, so every class can be re-
identified on a subsequent transformation), but currently they
do not differ in available configuration options. Examples of
class options include the following:
id
The IRI of the class to which the following transformation
options will be applied. In case of named classes, this IRI
is the IRI found in the ontology, in case of an anonymous
(implicit) class, this IR is auto-generated by hashing the
class.
Possible values:
Any character string
retained
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Specifies if this class is to be carried over into the Ecore
model or if it should be omitted. Only one representative
class of a group of equivalent classes can be retained.
Omitting a class means that no associated property or
individual can be transformed.

Possible values:
boolean

name

Specifies the name which is used for the class in the Ecore
model. This is generally automatically set to the frag-
ment] ofthe class’s IRI. This setting is especially useful
for assigning meaningful names to anonymous classes.

Possible values:

Any character string

ocl.ClassExpressions

Specifies if anonymous classes, which are used as equiva-
lent classes, super classes or class restriction for this
class, should be translated into an OCL constraint and
added as an EAnnotation.

Possible values:
boolean

Another type of configuration option may be properties,

which may have associated XML elements: objectProperty,
dataProperty. Again, transformation options can be specified
for every single property. Object properties and data proper-
ties share certain options, but both have their unique set of
options as well.

The following transformation options may apply to object

properties, as well as to data properties:

id

The IRI of the property to which the following transforma-
tion options will be applied.

Possible values:

Any character string

retained

Specifies if this property is to be carried over into the Ecore
model or if it should be omitted.

Possible values:
boolean

name

Specifies the name which is used for the property in the
Ecore model. This is generally automatically set to the
fragment2 of the property’s IRI.

Possible values:

Any character string

subPropertyRelation

This setting allows to specify several options related to
subproperty relations for each superproperty separately.
In consequence, multiple entries for subPropertyRela-
tion per property are possible.

Subvalues:
superProperty

The ID of a the superproperty, i.e., its IRL.

Possible values:
Any character string

ocl.SubPropertyRelation

Specifies if the super-/subproperty relationship
between two properties should make its way into
the Ecore model via an OCL constraint.

Possible values:
boolean

ocl.FunctionalProperty

Specifies if the “functional” characteristic of an property
should be expressed in the model by an OCL constraint.
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Possible values:
boolean
ocl.DisjointProperties
Specifies if the disjoint property relationship between two
properties should make its way into the Ecore model via
an OCL constraint.
Possible values:
boolean
ocl.Keys
Specifies if the fact that an property is declared as key of a
class expression should be reflected in the Ecore model
by an OCL constraint.
Possible values:
boolean
ocl.NegativePropertyAssertion
Specifies if negative property assertions for this property
should be expressed in the Ecore model by an OCL
constraint.
Possible values:
boolean
Object properties may have associated XML element:
objectProperty. The following transformation options may
apply only to object properties:
pushDown
This setting allows for a property to be pushed down to
subclasses if no domain and/or range was specified, i.e.,
domain and range are implicitly Thing. The default push
down behaviour is to set the domain and range to the
lowest common supertype (lowest in the sense of the
class hierarchy) of all corresponding individuals. Cus-
tom domain and range settings can be made via custom-
PushDown entries. OCL constraints for anonymous
class expressions may have to be dropped because the
corresponding reference in Thing is not available any
more. OCL constraints for disjointness of properties
may have to be dropped as well due to incompatible
lowest common supertypes. In this case, disjointness is
naturally provided by the incompatibility of these types.
Possible values:
Boolean
customPushDown
If pushDown is enabled (see above), these entries allow to
specify to which classes this property should be pushed
down, and which type the pushed down reference is
supposed to have. These entries are optional, if none are
given, a default push down behaviour is performed (i.e.,
lowest common supertype). Should be used with care, as
references from one instance to another may easily be
rendered untransformable and hence be lost.
Subproperty relations via OCL will be discarded. In addi-
tion, a custom push down for the inverse property must
be established as well in order to maintain the opposite
reference relation.
Subvalues:
domain Specifies the domain of the pushed down refer-
ence, i.e., the class to which the reference should be
pushed down.
Possible values:
AnIRI
range Specifies the range of the pushed down reference,
i.e., the type of the pushed down reference.
Possible values:
AnIRI
ocl.InverseFunctional Property
Specifies if the inverse functional characteristic of an
object property should be expressed in the model by an
OCL constraint.
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Possible values:
Boolean

ocl.SymmetricProperty

Specifies if the symmetric characteristic of an object prop-
erty should be expressed in the model by an OCL con-
straint.

Possible values:
boolean

ocl. AsymmetricProperty

Specifies if the asymmetric characteristic of an object
property should be expressed in the model by an OCL
constraint.

Possible values:
boolean

ocl. TransitiveProperty

Specifies if the transitive characteristic of an object prop-
erty should be expressed in the model by an OCL con-
straint.

Possible values:
Boolean

ocl.ReflexiveProperty

Specifies if the reexive characteristic of an object property
should be expressed in the model by an OCL constraint.

Possible values:
boolean

ocl.IrreflexiveProperty

Specifies if the irreexive characteristic of an object prop-
erty should be expressed in the model by an OCL con-
straint.

Possible values:
boolean

ocl.PropertyChains

Specifies if property chains which form a subproperty for
this property should be expressed in the Ecore model by
an OCL constraint.

Possible values:
Boolean

Data properties may have associated XML element: dataP-

roperty. The following transformation options may apply

40 only to data properties:

45

50

55

60

o

5

cardinality

If no explicit cardinality restrictions are given for a prop-
erty, this parameter can be used to override the default
setting which is 0..* in OWL, but is supposed to be 0..1
in many cases. This can be helpful, when the creator of
the ontology didn’t consider the 0..* default. Only car-
dinality restrictions on the domain class can be
expressed directly in Ecore and are thus used to deter-
mine the relevance of this setting. Any other cardinality
restriction can only be expressed by OCL and are not
taken into consideration here.

Possible values:
reduce 0..1 is used.
remain 0..* is used.

datatype

Specifies the datatype which should be used in the Ecore
model for this data property, if a different datatype than
the one from the ontology is desired. A full IRI has to be
given, e.g., http://www.w3.0org/2001/XMLSchema#int.
It is recommended to use the predefined XML Schema
simple types.

Possible values:
AnIRI

Individuals may have associated XML elements: named-

Individual, anonymousIndividual. As for classes and proper-
ties, it is possible to specify distinct transformation options
for every single individual. Named and anonymous individu-
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als may be separated configuration wise, but currently they
may not differ in available configuration options.
id
The identifier of the individuals to which the following
transformation options will be applied. In case of named
individuals, this is the individual’s IRI, in case of an
anonymous individual, this is the node ID.

Possible values:
Any character string

retained

Specifies if this individual is to be carried over into the
Ecore model for instances. Only one representative indi-
vidual of a group of equivalent individuals can be
retained.

Possible values:

boolean

Namespaces may have associated XML element:
namespace. The prefix of a namespace may be used as name
of an EPackage, when separate packages are to be created.
This entry may allow users to redefine a prefix specified in the
ontology or to define it in the first place in the case of
namespaces which do not have a prefix assigned. This ele-
ment can also be used inside other settings which require the
specification of a namespace.

iri

The IRI of the namespace whose prefix is to be (re-)de-

fined.
Possible values:
AnIRI

prefix

The actual prefix which will be used as package name in the
Ecore model.

Possible values:
Any character string

To modify transformation options, the plug-in may contain
a hierarchical configuration file editor. FIG. 27 illustrates a
configuration file editor 2700, in accordance with an example
embodiment. This editor may be an auto generated Eclipse
plug-in. Due to the fact that the configuration options may be
modeled as an Ecore data model, EMF’s code generation
facilities may be used to generate the configuration file editor.

A configuration file may be automatically created when
transforming an ontology for the first time. Subsequently, this
file can be opened in Eclipse. The file extension “.config” may
be registered for the editor, so it will automatically be used to
open the file if the file is named accordingly. Otherwise, it can
be opened by right-clicking on the configuration file and
selecting Open With, then Other . . . , and finally Config
Model Editor.

An example of two transformations being performed on the
same example ontology, but with distinct objectives, is pro-
vided below. The first transformation aims to preserve as
much information as possible, while the second transforma-
tion aims to obtain a clean and simple software model.

An example ontology in OWL functional syntax is pro-
vided as follows:

Prefix(owl:=<http://www.w3.0rg/2002/07/owl#>)
Prefix(:=<http://www.sap.com/owl2ecore/ontologies/partOfExample#>)
Ontology(<http://www.sap.com/owl2ecore/ontologies/partOfExample>
Declaration(Class(:BodyPart))

Declaration(Class(:Arm))

Declaration(Class(:Human))

Declaration(Class(:Vehicle))

Declaration(Class(:VehiclePart))

Declaration(Class(:Foot))

Declaration(Class(:Wheel))
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-continued

SubClassOf(:Arm :BodyPart)

SubClassOf(:Foot :BodyPart)

SubClassOf{Wheel :VehiclePart)
Declaration(ObjectProperty(:isPartOf))

SubClassOf(:BodyPart ObjectAll ValuesFrom(isPartOf :Human))
SubClassOf(:VehiclePart Object AllValuesFrom(isPartOf :Vehicle))
ClassAssertion( :Human :Martin )

DataPropertyAssertion( :hasName :Martin "Martin Knauer" )
DataPropertyDomain( :hasName :Human )

)

This example ontology may represent a simple taxonomy of
vehicle and vehicle parts, as well as humans and body parts.
It may contain the declaration of one object property,
isPartOf, for which no domain and range are specified, as well
as a data property hasName for the domain Human. No car-
dinality restriction is specified for this data property. The
ontology contains one individual (Martin).

FIG. 28 illustrates a graphical user interface 2800 for gen-
eral transformation configuration, in accordance with an
example embodiment. For both approaches (information
preservation vs. model simplicity), the settings shown in FIG.
28 may be used as general configuration options. The settings
for Namespace Transformation and Helper Classes Location
allow the depiction of the class hierarchy as a whole in one
single Ecore diagram. A Document Root is useful when cre-
ating new instances using the auto-generated editor, which is
not crucial for this example.

FIG. 29 illustrates a graphical user interface 2900 with a
configuration for maximum preservation, in accordance with
an example embodiment. In order to preserve a maximum of
information, the settings shown in FIG. 29 may be chosen.
The slider setting specifies that anonymous classes are used in
class descriptions are transformed into explicit classes in
Ecore and their semantics are preserved by embedding the
appropriate OCL validation delegates on these classes.

The user may also want to transform the individuals of the
ontology and generate OCL constraints which represent the
characteristics of the transformed properties. To be faithful to
the ontology, the user may choose neither to reduce the car-
dinality of data properties, nor to infer domain and range of
object properties.

FIG. 30 illustrates an Ecore diagram 3000 after a first
information preserving transformation, in accordance with an
example embodiment. The isPartOf property may be attached
to Thing. The result of the ABox transformation is not visible
in this diagram.

The names of the anonymous classes may be derived from
hash values and may not be human-readable. In some
embodiments, they may be changed via the auto-generated
configuration editor. FIG. 31 illustrates a graphical user inter-
face 3100 for customizing the name of anonymous classes, in
accordance with an example embodiment. FIG. 32 illustrates
an Ecore diagram 3200 after customizing class names, in
accordance with an example embodiment.

FIG. 33 illustrates a graphical user interface 3300 with a
configuration for a simple model, in accordance with an
example embodiment. In order to obtain a clean and simple
model, the settings shown in FIG. 33 may be chosen. In this
case, the user may select to neither transform the anonymous
classes nor the ABox. Furthermore, the user may select to not
generate OCL constraints representing property characteris-
tics. The user may also choose to reduce the cardinality of
data properties. The user may further select to infer domain
and range of object properties.
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FIG. 34 illustrates an Ecore diagram 3400 of a clean and
simple software model, in accordance with an example
embodiment. Again, the user may want to fine-tune the result
by pushing down the isPartOf reference from the common
supertype to two separate classes. This may be done by using
the auto-generated configuration editor. FIG. 35 illustrates a
graphical user interface 3500 for creating CustomPushDown
elements for the isPArtOf property, in accordance with an
example embodiment. FIG. 36 illustrates a graphical user
interface 3600 for setting the domain and range values for the
CustomPushDown elements, in accordance with an example
embodiment. FIG. 37 illustrates an Ecore diagram 3700 after
pushing down the isPartOf reference, in accordance with an
example embodiment.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A hardware module is a
tangible unit capable of performing certain operations and
may be configured or arranged in a certain manner. In
example embodiments, one or more computer systems (e.g.,
a standalone, client, or server computer system) or one or
more hardware modules of a computer system (e.g., a pro-
cessor or a group of processors) may be configured by soft-
ware (e.g., an application or application portion) as a hard-
ware module that operates to perform certain operations as
described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that is permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA) or
an application-specific integrated circuit (ASIC)) to perform
certain operations. A hardware module may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware module mechanically, in dedicated
and permanently configured circuitry, or in temporarily con-
figured circuitry (e.g., configured by software) may be driven
by cost and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired) or temporarily configured (e.g., programmed) to
operate in a certain manner and/or to perform certain opera-
tions described herein. Considering embodiments in which
hardware modules are temporarily configured (e.g., pro-
grammed), each of the hardware modules need not be con-
figured or instantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor configured using software, the general-
purpose processor may be configured as respective different
hardware modules at different times. Software may accord-
ingly configure a processor, for example, to constitute a par-
ticular hardware module at one instance of time and to con-
stitute a different hardware module at a different instance of
time.

Hardware modules can provide information to, and receive
information from, other hardware modules. Accordingly, the
described hardware modules may be regarded as being com-
municatively coupled. Where multiple of such hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
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circuits and buses) that connect the hardware modules. In
embodiments in which multiple hardware modules are con-
figured or instantiated at different times, communications
between such hardware modules may be achieved, for
example, through the storage and retrieval of information in
memory structures to which the multiple hardware modules
have access. For example, one hardware module may perform
an operation and store the output of that operation in a
memory device to which it is communicatively coupled. A
further hardware module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware modules may also initiate communications with
input or output devices and can operate on a resource (e.g., a
collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi-
ments, comprise processor-implemented modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within a
single machine, but deployed across a number of machines. In
some example embodiments, the processor or processors may
be located in a single location (e.g., within a home environ-
ment, an office environment or as a server farm), while in
other embodiments the processors may be distributed across
a number of locations.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some ofthe operations may be performed by
a group of computers (as examples of machines including
processors), these operations being accessible via a network
(e.g., the network 114 of FIG. 1) and via one or more appro-
priate interfaces (e.g., APIs).

Example embodiments may be implemented in digital
electronic circuitry, or in computer hardware, firmware, soft-
ware, or in combinations of them. Example embodiments
may be implemented using a computer program product, e.g.,
a computer program tangibly embodied in an information
carrier, e.g., in a machine-readable medium for execution by,
or to control the operation of, data processing apparatus, e.g.,
a programmable processor, a computer, or multiple comput-
ers.

A computer program can be written in any form of pro-
gramming language, including compiled or interpreted lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, subroutine, or other unit
suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or
on multiple computers at one site or distributed across mul-
tiple sites and interconnected by a communication network.

In example embodiments, operations may be performed by
one or more programmable processors executing a computer
program to perform functions by operating on input data and
generating output. Method operations can also be performed
by, and apparatus of example embodiments may be imple-
mented as, special purpose logic circuitry (e.g., a FPGA or an
ASIC).
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A computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, it will be
appreciated that both hardware and software architectures
merit consideration. Specifically, it will be appreciated that
the choice of whether to implement certain functionality in
permanently configured hardware (e.g., an ASIC), in tempo-
rarily configured hardware (e.g., a combination of software
and a programmable processor), or a combination of perma-
nently and temporarily configured hardware may be a design
choice. Below are set out hardware (e.g., machine) and soft-
ware architectures that may be deployed, in various example
embodiments.

FIG. 38 is a block diagram of a machine in the example
form of a computer system 3800 within which instructions
3824 for causing the machine to perform any one or more of
the methodologies discussed herein may be executed, in
accordance with an example embodiment. In alternative
embodiments, the machine operates as a standalone device or
may be connected (e.g., networked) to other machines. In a
networked deployment, the machine may operate in the
capacity of a server or a client machine in a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer system 3800 includes a processor
3802 (e.g., a central processing unit (CPU), a graphics pro-
cessing unit (GPU) or both), amain memory 3804 and a static
memory 3806, which communicate with each other via a bus
3808. The computer system 3800 may further include a video
display unit 3810 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)). The computer system 3800 also
includes an alphanumeric input device 3812 (e.g., a key-
board), a user interface (UI) navigation (or cursor control)
device 3814 (e.g., a mouse), a disk drive unit 3816, a signal
generation device 3818 (e.g., a speaker) and a network inter-
face device 3820.

The disk drive unit 3816 includes a machine-readable
medium 3822 on which is stored one or more sets of data
structures and instructions 3824 (e.g., software) embodying
or utilized by any one or more of the methodologies or func-
tions described herein. The instructions 3824 may also reside,
completely or at least partially, within the main memory 3804
and/or within the processor 3802 during execution thereof by
the computer system 3800, the main memory 3804 and the
processor 3802 also constituting machine-readable media.
The instructions 3824 may also reside, completely or at least
partially, within the static memory 3806.

While the machine-readable medium 3822 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more instructions 3824 or data structures. The term
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“machine-readable medium” shall also be taken to include
any tangible medium that is capable of storing, encoding or
carrying instructions for execution by the machine and that
cause the machine to perform any one or more of the meth-
odologies of the present embodiments, or that is capable of
storing, encoding or carrying data structures utilized by or
associated with such instructions. The term “machine-read-
able medium” shall accordingly be taken to include, but not
be limited to, solid-state memories, and optical and magnetic
media. Specific examples of machine-readable media include
non-volatile memory, including by way of example semicon-
ductor memory devices (e.g., Erasable Programmable Read-
Only Memory (EPROM), Electrically Erasable Program-
mable Read-Only Memory (EEPROM), and flash memory
devices); magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and compact disc-
read-only memory (CD-ROM) and digital versatile disc (or
digital video disc) read-only memory (DVD-ROM) disks.

The instructions 3824 may further be transmitted or
received over a communications network 3826 using a trans-
mission medium. The instructions 3824 may be transmitted
using the network interface device 3820 and any one of a
number of well-known transfer protocols (e.g., HTTP).
Examples of communication networks include a LAN, a
WAN, the Internet, mobile telephone networks, POTS net-
works, and wireless data networks (e.g., WiFi and WiMax
networks). The term “transmission medium” shall be taken to
include any intangible medium capable of storing, encoding,
or carrying instructions for execution by the machine, and
includes digital or analog communications signals or other
intangible media to facilitate communication of such soft-
ware.

Although an embodiment has been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope ofthe present disclosure. Accordingly, the specification
and drawings are to be regarded in an illustrative rather than
a restrictive sense. The accompanying drawings that form a
part hereof, show by way of illustration, and not of limitation,
specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.

Although specific embodiments have been illustrated and
described herein, it should be appreciated that any arrange-
ment calculated to achieve the same purpose may be substi-
tuted for the specific embodiments shown. This disclosure is
intended to cover any and all adaptations or variations of
various embodiments. Combinations of the above embodi-
ments, and other embodiments not specifically described
herein, will be apparent to those of skill in the art upon
reviewing the above description.

What is claimed is:

1. A computer-implemented method comprising:

enabling a user to adjust configuration settings for a trans-

formation of primitives of a Semantic Web ontology
language into primitives of a software modeling lan-
guage the primitives of the Semantic Web ontology lan-
guage being part of an ontology;
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storing the adjusted configuration settings on a storage

device;

performing, by a machine, the transformation of primitives

of the Semantic Web ontology language into primitives

of the software modeling language using the adjusted

configuration settings stored on the storage device, the

performing of the transformation comprising:

creating a metamodel;

adding an instance of a metamodel class for a top-level
class to the metamodel, the top-level class character-
ized by having no superclass and being a common
superclass for all classes of the ontology;

for each top class of a class hierarchy of the ontology,
adding a corresponding instance of the metamodel
class to the metamodel, each top class characterized
by having no superclass;

associating the top-level class with the instances of the
metamodel class corresponding to each top class of
the class hierarchy; and

for each top class of the class hierarchy of the ontology,
adding an annotation comprising a corresponding
internationalized resource identifier (IRI) for the top
class to the instance of the metamodel class for the top
class, adding a corresponding instance of the meta-
model class for each subclass of the top class to the
metamodel, and associating the top class with the
instances of the metamodel class corresponding to
each subclass of the top class; and

enabling a selection of the adjusted configuration settings

stored on the storage device for use in a subsequent
transformation of primitives of the Semantic Web ontol-
ogy language into primitives of the software modeling
language.

2. The method of claim 1, wherein performing the trans-
formation comprises generating Object Constraint L.anguage
(OCL) constraints for primitives of the software modeling
language.

3. The method of claim 1, wherein the semantic web lan-
guage is Resource Description Framework Schema (RDFS).

4. The method of claim 1, wherein the semantic web lan-
guage is Web Ontology Language (OWL).

5. The method of claim 1, wherein the software modeling
language is Ecore.

6. The method of claim 1, wherein the primitives of the
Semantic Web language comprise classes, properties, indi-
viduals, and resources.

7. The method of claim 1, further comprising enabling the
user or another user to adjust the adjusted configuration set-
tings for use in the subsequent transformation of primitives of
the Semantic Web ontology language into primitives of the
software modeling language.

8. A system comprising:

a machine having at least one processor; and

an ontology transformation module on the machine, the

ontology transformation module being configured to:

enable a user to adjust configuration settings for a trans-
formation of primitives of a Semantic Web ontology
language into primitives of a software modeling lan-
guage, the primitives of the Semantic Web ontology
language being part of an ontology;

store the adjusted configuration settings on a storage
device;

perform the transformation of primitives of the Semantic
Web ontology language into primitives of the soft-
ware modeling language using the adjusted configu-
ration settings stored on the storage device, the per-
forming of the transformation comprising:
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creating a metamodel;

adding an instance of a metamodel class for a top-
level class to the metamodel, the top-level class
characterized by having no superclass and being a
common superclass for all classes of the ontology;

for each top class of a class hierarchy of the ontology,
adding a corresponding instance of the metamodel
class to the metamodel, each top class character-
ized by having no superclass;

associating the top-level class with the instances of
the metamodel class corresponding to each top
class of the class hierarchy; and

for each top class of the class hierarchy of the ontol-
ogy, adding an annotation comprising a corre-
sponding internationalized resource identifier (IR1)
for the top class to the instance of the metamodel
class for the top class, adding a corresponding
instance of the metamodel class for each subclass
of the top class to the metamodel, and associating
the top class with the instances of the metamodel
class corresponding to each subclass of the top
class; and

enable a selection of the adjusted configuration settings

stored on the storage device for use in a subsequent

transformation of primitives of the Semantic Web

ontology language into primitives of the software

modeling language.

9. The system of claim 8, wherein the ontology transfor-
mation module is further configured to generate Object Con-
straint Language (OCL) constraints for primitives of the soft-
ware modeling language.

10. The system of claim 8, wherein the semantic web
language is Resource Description Framework Schema
(RDFS).

11. The system of claim 8, wherein the semantic web
language is Web Ontology Language (OWL).

12. The system of claim 8, wherein the software modeling
language is Ecore.

13. The system of claim 8, wherein the primitives of the
Semantic Web language comprise classes, properties, indi-
viduals, and resources.

14. The system of claim 8, wherein the ontology transfor-
mation module is further configured to enable the user or
another user to adjust the adjusted configuration settings for
use in the subsequent transformation of primitives of the
Semantic Web ontology language into primitives of the soft-
ware modeling language.

15. A non-transitory machine-readable storage device, tan-
gibly embodying a set of instructions that, when executed by
at least one processor, causes the at least one processor to
perform a set of operations comprising:

enabling a user to adjust configuration settings for a trans-

formation of primitives of a Semantic Web ontology
language into primitives of a software modeling lan-
guage, the primitives of the Semantic Web ontology
language being part of an ontology;

storing the adjusted configuration settings on a storage

device;

performing the transformation of primitives of the Seman-

tic Web ontology language into primitives of the soft-

ware modeling language using the adjusted configura-

tion settings stored on the storage device, the performing

of the transformation comprising:

creating a metamodel;

adding an instance of a metamodel class for a top-level
class to the metamodel, the top-level class character-
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ized by having no superclass and being a common
superclass for all classes of the ontology;

for each top class of a class hierarchy of the ontology,
adding a corresponding instance of the metamodel
class to the metamodel, each top class characterized
by having no superclass;

associating the top-level class with the instances of the
metamodel class corresponding to each top class of
the class hierarchy; and

for each top class of the class hierarchy of the ontology,
adding an annotation comprising a corresponding
internationalized resource identifier (IRI) for the top
class to the instance of the metamodel class for the top
class, adding a corresponding instance of the meta-
model class for each subclass of the top class to the
metamodel, and associating the top class with the
instances of the metamodel class corresponding to
each subclass of the top class; and

enabling a selection of the adjusted configuration settings
stored on the storage device for use in a subsequent

5
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transformation of primitives of the Semantic Web ontol-
ogy language into primitives of the software modeling
language.

16. The device of claim 15, wherein performing the trans-
formation comprises generating Object Constraint [.anguage
(OCL) constraints for primitives of the software modeling
language.

17. The device of claim 15, wherein the semantic web
language is Resource Description Framework Schema
(RDFS).

18. The device of claim 15, wherein the semantic web
language is Web Ontology Language (OWL).

19. The device of claim 15, wherein the software modeling
language is Ecore.

20. The device of claim 15, wherein the set of operations
further comprises enabling the user or another user to adjust
the adjusted configuration settings for use in the subsequent
transformation of primitives of the Semantic Web ontology
language into primitives of the software modeling language.
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